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Abstract. An assumption of most regression analyses is that independent variables are measured without 
error. However, in ecological studies it is common to use independent variables that are derived from sam-
ples and therefore contain some uncertainty. For example, when assessing the assumption that energy avail-
ability on the landscape is the primary driver of duck distribution during nonbreeding seasons, investigators 
typically sample energy availability at sites and use the site-level means as a covariate to predict duck abun-
dance. This strategy ignores uncertainty in the estimates of energy availability, which should be propagated 
into estimates of effects and predicted values of the response variable. I used Bayesian hierarchical models to 
include uncertainty in site-level covariates when modeling dabbling duck count data during the spring in 
northeastern Colorado, USA. I found that even after accounting for uncertainty in energy availability, it was 
an important predictor of dabbling duck use of sites. Counts were greater at sites with more energy available; 
however, credible intervals were substantially wider when uncertainty in predictor variables was included. 
Therefore, ignoring uncertainty leads to overly precise model outputs. Furthermore, I found that larger sites 
and those further east also supported more dabbling ducks. Using a sample as a covariate is common in eco-
logical studies, and researchers can use the methods outlined here to account for this additional level of 
uncertainty. These case study results can be used by habitat managers and planners to guide how and where 
wetland restoration occurs with a more accurate idea of the uncertainty associated with various effects. 
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INTRODUCTION 

Uncertainty enters into our understanding of 
ecological processes through multiple sources. 
Increasingly, researchers are acknowledging vari-
ous sources of uncertainty and attempting to 
account for it (Cressie et al. 2009). Process uncer-
tainty represents incomplete knowledge or 
depiction of a phenomenon or the unpredictabil-
ity of parameters, whereas observation uncer-
tainty results from inability to measure perfectly 
or completely (i.e., sampling) and may include 
bias in measurements (Hilborn and Mangel 1997, 
Hobbs and Hooten 2015). Traditionally, process 

uncertainty has been the main source of uncer-
tainty included in statistical analyses, whereas 
observation uncertainty is not typically men-
tioned unless there was an obvious source of bias 
in measurements (e.g., Dorazio 2014). Specifi-
cally with regard to predictor variables, observa-
tion uncertainty can lead to bias in parameter 
estimates, loss of power to detect effects, and 
potentially false conclusions (Davies and Hutton 
1975, Reeves et al. 1998, Carroll et al. 2006). A 
fundamental assumption of most regression 
models is that independent variables are mea-
sured without error (Sokal and Rohlf 1995). 
Therefore, methods to deal with observation 
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uncertainty in predictor variables have received 
much attention, and an entire class of models 
(measurement error or errors-in-variables mod-
els) have been developed (Fuller 1987). However, 
used in a likelihood-based framework, these 
models can be somewhat limiting in terms 
of how complex they can be. Achieving con-
vergence and parameter estimation can be 
challenging due to their high dimensionality 
(Jitjareonchai et al. 2006, Bartlett and Keogh 
2018). 

Bayesian hierarchical models are being used 
more frequently by ecologists to model complex 
systems and represent one approach to address 
process and observation uncertainty. Hierarchical 
models allow uncertainty at one level (e.g., pre-
dictor variable) to be propagated into effect sizes 
and parameter estimates in another level (predic-
tions of response variable; Gelman and Hill 2007, 
Bartlett and Keogh 2018). Furthermore, in a 
Bayesian framework with Markov Chain Monte 
Carlo methods, models can handle much greater 
complexity when compared with frequentist 
methods (Bartlett and Keogh 2018). Bayesian 
hierarchical models accounting for measurement 
error in covariates have been used in epidemiol-
ogy (Richardson and Gilks 1993, Bartlett and 
Keogh 2018), occupancy modeling (Rota et al. 
2016), and population dynamics (Calder et al. 
2003, Clark and Bjornstad 2004) but have 
received limited use in other realms of ecology. 
The approach involves treating the true unob-
served values of a predictor variable as a latent 
variable (Hoffmann et al. 2017). Measurement 
error can be modeled using either classical or 
Berkson errors. Classical measurement error 
models consist of the observed variable X* con-
ditional on the latent true variable X and an error 
term (X* = X + ϵ), whereas with Berkson errors, 
the latent true variable is conditional on the 
observed values plus an error term (X = X* + ϵ, 
Carroll et al. 2006). Classical errors arise when 
researchers have repeated measurements around 
a true value, whereas Berkson errors occur when 
a group’s mean is assigned to each individual 
(Heid et al. 2004). I focus on classical measure-
ment error in this paper. 

A common scenario in ecological research 
involves taking samples of some covariate at the 
site (or individual, group, etc.) level that is sus-
pected to explain variation in a response variable 

among sites (or individuals, groups, etc.; Osborn 
et al. 2017, Nhu et al. 2019, Spaan et al. 2019). For 
example, in a study attempting to identify pre-
dictors of bird abundance among montane 
meadows, vegetation samples were taken within 
each site and the site-level means were used as 
covariates in regression models (Saveraid et al. 
2001). Using site-level means as covariates seems 
to be the standard way information derived from 
samples is included as covariates in analyses 
(Kalies et al. 2012, Pilliod et al. 2013, Wimp et al. 
2019, Lindstrom et al. 2020). Under this scenario, 
no bias is suspected because the covariate is 
based on multiple samples from each site. How-
ever, there is still uncertainty in the estimate of 
the site-level mean that should be accounted for 
but is rarely mentioned (Freckleton 2011). As 
with any sampling, this uncertainty is the result 
of data collected at a smaller scale (sample) than 
that at which inference is desired (population). 
As long as there is no systematic bias in sam-
pling, parameter estimates should be unbiased 
but confidence intervals around predicted values 
and effects should widen. By taking multiple 
samples at each site, researchers have the ability 
to estimate the uncertainty associated with the 
site-level mean and include this information in 
their models. 
Herein, I use a case study of duck habitat 

use among sites to show how observation 
uncertainty in predictor variables can be 
accounted for. Although I focus on predictors 
of habitat use among sites, these methods of 
accounting for uncertainty in predictor vari-
ables could be used in many other scenarios 
involving sampled variables that are used as 
predictors of variation among individuals, spe-
cies, or any other grouping or classification. 
Methods have previously been developed to 
deal with observation uncertainty (Richardson 
and Gilks 1993, Fox and Glas 2003, Hobbs and 
Hooten 2015, Bartlett and Keogh 2018), and the 
effects of ignoring observation uncertainty have 
been documented (Linden and Knape 2009, 
Freckleton 2011), but they are rarely used in 
ecological research for the habitat use or selec-
tion scenario described in the case study. There-
fore, my objective was to show how these 
methods can be applied to a common ecologi-
cal research scenario and how they influence 
overall inference. 
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Case study 
Current paradigms of habitat management 

and planning for nonbreeding waterfowl are 
focused on providing enough energy on the 
landscape to support regional population goals 
(U.S. Department of the Interior and Environ-
ment Canada 1986, Central Valley Joint Venture 
2006, Soulliere et al. 2007, Playa Lakes Joint Ven-
ture 2008). These habitat management and plan-
ning strategies assume that energy availability is 
a limiting factor during nonbreeding periods 
(Playa Lakes Joint Venture 2008), and therefore, 
migrating and wintering ducks select habitat 
based on energy availability. This assumption 
should be thoroughly tested, given the amount 
of management resources that are spent to 
increase food availability on the landscape (Col-
orado Division of Wildlife 2011, U.S. Fish and 
Wildlife Service 2013). Generally, previous 
research has shown that local-scale duck abun-
dance is positively related to energy density of 
sites although the effects were variable (Brasher 
2010, O’Shaughnessy 2014). In addition to energy 
availability, many other factors have been shown 
to influence duck use of sites during migration 
and winter including wetland type or vegetation 
patterns in wetlands, size, presence of adjacent 
wetlands, distance to rivers, and water depth 
(Brasher 2010, Webb et al. 2010, Hagy and 
Kaminski 2012, Beatty et al. 2014, O’Shaughnessy 
2014, Osborn et al. 2017). If ducks do not respond 
to changes in energy availability as strongly as 
predicted due to selection for other factors, the 
actual number of ducks supported may be less 
than what planners anticipated. 

Examining the effects of energy availability on 
duck abundance requires estimating energy avail-
ability. Like many ecological covariates, food sam-
pling is a time and labor-intensive process 
(Williams et al. 2014). Therefore, researchers take a 
small number of food samples (usually about 5–10, 
Olmstead et al. 2013, O’Shaughnessy 2014, Osborn 
et al. 2017) at each site that they are interested in 
representing. These samples contain uncertainty 
(Behney et al. 2014) that is generally ignored in 
analyses that use site-level means of energy avail-
ability as predictor variables. Accounting for this 
uncertainty should broaden confidence intervals 
around the covariate’s parameter estimate and 
overall model predictions, potentially to the point 
where the variable is no longer important. 

In a Bayesian hierarchical modeling frame-
work, I assessed the relationship between site-
level characteristics and the intensity of duck use 
in northeastern Colorado during spring migra-
tion. My main objective was to examine the effect 
of accounting for observation uncertainty in 
energy availability while assessing its relation-
ship with the intensity of duck use of sites. I 
expected other factors to influence site use as 
well so I also assessed how vegetation structure, 
size, and geographic location affected the inten-
sity of duck use of sites. Like energy availability, 
vegetation density was also a sample and con-
tained observation uncertainty for which I 
accounted. Vegetation structure or density can 
influence how ducks perceive predation risk 
(Behney et al. 2018). If perceived predation risk 
prevented ducks from using sites, I expected my 
measure of vegetation density to be a good pre-
dictor of use. There are energetic costs when 
traveling from roosting or loafing sites to forag-
ing patches (Johnson et al. 2014). I assessed 
whether these energetic costs played an impor-
tant role in shaping duck distribution by includ-
ing variables quantifying the distance of each site 
to a large reservoir and the distance to a river, 
which are commonly used for roosting or loafing 
(Ringelman et al. 1989). Lastly, local-scale duck 
abundance is limited by duck abundance at lar-
ger spatial scales. If this large-scale flyway loca-
tion effect is an important driver of local-scale 
duck abundance, then geographic location along 
an east–west gradient should be a good predictor 
of duck abundance. 

METHODS 

Study area and site selection 
I conducted this study over a 3,331,501-ha area 

in northeastern Colorado in Sedgwick, Washing-
ton, Logan, Morgan, Weld, and Larimer counties. 
The area is generally classified as shortgrass 
prairie with intensive agriculture focusing on cat-
tle production and row crop farming. Most water 
features in the region (other than playas) are asso-
ciated with the South Platte River and were found 
within the river basin corridor. Therefore, to 
ensure a spatially balanced sample, I divided the 
South Platte River corridor (~10 km from river) 
into four quadrants (~70 river km per quadrant). 
Using wetland geographic information system 
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data, I compiled a list of all potential sites (proper-
ties, both public and private) within each quad-
rant for each type of water feature and randomly 
selected sites within each quadrant. I used 6 gen-
eral types of water features: actively managed 
emergent wetland, passively managed emergent 
wetlands, sloughs, playas, small reservoirs 
(<200 ha), and large reservoirs (≥200 ha). These 
water feature types represented a substantial pro-
portion of the overall wetland habitat base used 
in regional avian habitat planning models (Playa 
Lakes Joint Venture 2008). I randomly selected 
sites equally among quadrants and water feature 
type. I was unable to gain access to 3 randomly 
selected sites so I randomly selected new sites to 
replace them. 

Playas are found farther from the South Platte 
River than other wetland types. Therefore, I 
selected study playas, by creating a grid 
(7.5 × 7.5 min topographic map quadrangles) 
across northeastern Colorado. I randomly 
selected two grid cells that contained at least 5 
playas that were greater than 0.25 ha. I then ran-
domly selected playas within each grid cell to 
sample. During this study, playas were infre-
quently inundated due to drought, which drasti-
cally reduced the sample size of playas. 

Sampling methods 
Duck counts.—In late winter, after most water 

bodies thawed and ducks started to arrive, I con-
ducted weekly bird counts during morning (sun-
rise to 1000) between 28 February and 1 June 
2016 and 2017 on all sites. I visited each site once 
per week in a random order and noted the num-
ber of each species of duck present. For most 
sites, I was able to conduct counts each week and 
collected 10 or 11 counts throughout each spring. 
However, for some sites, I was not able to visit 
them every week and I excluded sites from anal-
yses with fewer than three samples in a year. I 
also excluded sites for which I did not collect 
energy availability or vegetation density data. I 
attempted to estimate detection probability dur-
ing duck counts through double counting. First, I 
counted ducks from a vantage point or vehicle 
without disturbing them. Then, for water fea-
tures less than ~ 2 ha, I walked the perimeter 
and out into the wetland to flush and count all 
ducks. For sloughs, I walked a 500 m stretch to 
flush and count all ducks. For reservoirs, I 

randomly selected a quarter or an eighth of the 
water feature, and used aerial photographs in the 
field to identify the extent of, and counted all 
ducks within, the selected area. I also walked the 
bank or out into any vegetation to flush any 
ducks that were not initially visible. Farther from 
the bank, there was no vegetation that would 
have prevented detection of ducks. Observers 
used spotting scopes and binoculars to scan open 
water areas to search for ducks. Detection of 
ducks during flush counts was always ≥ to that 
of vantage surveys so I only used flush counts in 
analyses and did not account for detection prob-
ability. By flushing all ducks in smaller water fea-
tures and those in vegetation in reservoirs, I 
believe that any bias due to detection probability 
was minimal. 
Food and vegetation sampling.—I used core sam-

pling (Williams et al. 2014) to estimate food den-
sity during fall and spring. Details of food 
sampling and estimates of food and energy den-
sity and depletion for these study sites are pre-
sented in Behney (2020). Briefly, I sampled in late 
winter (23 February through 16 March 2016 and 
2017), as soon as wetlands began thawing to esti-
mate food density at the beginning of spring 
migration. I randomly distributed seven core 
samples (Behney et al. 2014) throughout portions 
of water features with water depth less than 
50 cm. I used this cutoff because dabbling ducks 
(Genus Anas, Spatula, Mareca, Aix) generally do 
not feed in water deeper than 50 cm (Behney 
2014). Core samples were processed in the labo-
ratory where I visually searched through the 
material and picked out any seed, tuber, or inver-
tebrate and identified items to lowest taxonomic 
level possible, generally, to genus for plant mat-
ter and to class or order for invertebrates. I dried 
all material at 60°C to a constant mass (about 
48 h) and weighed to the nearest 0.00001 g to 
estimate food density (kg/ha) and facilitate con-
version to energy density (kcal/ha) based on pub-
lished true metabolizable energy values for duck 
food items at the lowest taxonomic level possible 
(Livolsi et al. 2015). I converted energy density to 
total available energy at a site by multiplying 
energy density by the area of each site for which 
water depth was shallow enough to facilitate 
feeding by dabbling ducks (<50 cm) presented in 
Behney (2020). At each core location, I estimated 
vegetation density/structure using a modified 
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Robel pole technique for which I noted the num-
ber of 10 cm bands on a 1.5 m tall pole (2.54 cm 
diameter) that were completely visible from 5 m, 
repeated for each of the four cardinal directions. 

Statistical analyses 
To assess factors that influence dabbling duck 

use of sites during spring, I modeled weekly dab-
bling duck counts (pooled across species) in a 
Bayesian hierarchical analysis. I used a negative 
binomial distribution to represent duck counts 
because initial data exploration suggested a Pois-
son distribution could not adequately represent 
the variation present in the duck count data. I 
limited analyses and inference to dabbling ducks 
because they are the primary focus of manage-
ment activity in the region (Playa Lakes Joint 
Venture Waterfowl Team 2005). I included week 
as a count-level (i.e., individual-level) predictor 
and total available energy (all energy found at 
water depths less than 50 cm), an index of vege-
tation density (Robel pole measurements), site 
size (ha), distance to the nearest large reservoir 
(km), distance to the South Platte River (km), 
and UTM easting coordinate (km) as site-level 
(i.e., group-level) predictors. To calculate the dis-
tance from each site to large reservoirs and the 
river, I calculated the distances between the cen-
troid of each site and the centroid of the nearest 
large reservoir or the centerline of the river in 
ArcMap (Esri, Redlands, California, USA). 

Energy density and vegetation density metrics 
included some uncertainty because they, them-
selves, were samples. Therefore, in addition to 
the count model, I included energy and vegeta-
tion density models in the overall hierarchical 
model and used the parameters estimated from 
these models as covariates in the duck count 
model. I modeled energy using a lognormal dis-
tribution: 

� � 
μ
energylogðenergyÞ ∼ normal jk ,σ2 

energy 

where energyijq is the energy estimated from food 
sample i at site j in year q. 

For vegetation density, I used a binomial distri-
bution: � � � � 

α2vegvegdijq ∼ binomial inv:logit ijq ,15  
� � 

α2veg 
α1veg∼ normal ,σ2 

ijq jq veg 

where vegdijq is the number of sections of the pole 
that were visible out of 15 total sections, read 
from direction d, at sample location i, within site 
j, in year q. I included direction d as an additional 
level for the vegetation model but not in the 
energy availability model because at each sample 
location, a vegetation density reading was taken 
from 4 directions, whereas only 1 food sample 
was taken at each sample location. Sample loca-
tion was nested within site so I used the vegeta-
tion density mean of the site as the prior mean 
for the sample location. 
I modeled weekly duck counts (k) at site j in 

year q using a negative binomial distribution 
where the intercept was allowed to vary by site 
and year. I included site-level covariates to 
explain variability in the intercept. The global 
count model took the form: 

� � 
countkjq ∼ negative binomial pkjq,r 

r 
pkjq ¼ 

r þ λkjq � � 
log λkjq ¼ αjq þ β1 weekk þ β2 weekk 

2 

� � 
αjq ∼ normal μα 

jq,σ
2 
α 

μ
energy 

α1vegμα 
jq ¼  0 þ  1 jk þ  2 jq 

þ 3 res distj þ  4 riv distj 
þ 5 eastingj þ  6 sizej 

where μ
energy and α1veg were estimated in thejk jq 

energy and vegetation density submodels, 
respectively. Full model posterior and joint distri-
butions are shown in Appendix S1. 
By modeling energy and vegetation density in 

the overall hierarchical model, uncertainty in 
their estimates is propagated into the duck count 
model. All priors were vague; coefficients (β, τ) 
were assigned normal(0, 0.0001[precision]) except 
in the vegetation density model where coeffi-
cients (α1vegjq ) were assigned normal(0, 0.5[preci-
sion]) priors because it used a logit link 
function, and I wanted priors to be vague on 
the probability scale (Northrup and Gerber 
2018) rather than the scale of the link function. 
Standard deviations were assigned uniform (0, 
5) priors. I centered all predictor variables 
before inclusion in the model. 
I used a multi-phase modeling strategy. Firstly, 

I assessed the best form of the week variable 
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without including any site-level predictors. 
I included week as a cubic, quadratic, and linear 
predictor of duck counts and included an inter-
cept-only null model in the model set. I com-
pared models using deviance information 
criterion (DIC) and by assessing whether 95% 
credible intervals of the coefficients contained 
zero. Many options exist for Bayesian model 
selection but I chose DIC because it is simple to 
calculate and is similar to AIC, which is widely 
used and understood by ecologists (Hooten and 
Hobbs 2015). Secondly, using the best form of the 
week variable, I assessed whether energy density 
or vegetation density should be included in the 
final model of duck counts. I included these vari-
ables in this separate stage of modeling because 
they were samples themselves and required a 
mixture of models, each with their own parame-
ters. I fit a model including vegetation and 
energy density in an additive relationship and 
determined that a variable should be in the final 
model if the 95% credible interval for its coeffi-
cient excluded zero (e.g., Hobbs et al. 2012). I did 
not use DIC to compare models in this stage 
because DIC measures the fit of a model penal-
ized by the effective number of parameters (Gel-
man and Hill 2007). The goal of incorporating 
uncertainty in covariates is not necessarily to 
improve model fit, but to more realistically rep-
resent uncertainty that is present in the data, 
which requires estimating additional parameters. 
Therefore, a model incorporating predictor 
uncertainty will likely have a worse DIC than a 
model ignoring this uncertainty. Lastly, using the 
best model from stage two, I compared models 
including all additive combinations of distance 
to large reservoir, distance to river, and easting 
using DIC and assessing 95% credible intervals. 
In this final stage, I also included two models 
incorporating interactions between energy den-
sity, distance to reservoir, and distance to river 
(energy × reservoir and energy × river) to test 
for differences in how ducks select foraging sites 
based on how far they are from roost locations 
(Kennedy and Gray 1997). Because the response 
variable was raw counts (not density), to account 
for differences in area among sites, I included a 
size (ha) variable in all models during this last 
stage of modeling. None of the predictors were 
highly correlated (all Pearson correlation coeffi-
cients < 0.5). 

I ran three chains for 30,000 Markov Chain 
Monte Carlo (MCMC) iterations following 5,000 
iterations for burn-in and 5,000 iterations for 
adaptation for optimal sampling and fit models 
using Jags via the RJags package (Plummer 2018) 
in program R (R Core Team 2019). To assess con-
vergence, I visually examined trace plots and cal-
culated Gelman and Rubin’s convergence 
diagnostic in the CODA package (Plummer et al. 
2006) to ensure it was close to 1 (Gelman and 
Rubin 1992, Brooks and Gelman 1998, Gelman 
and Hill 2007). 
To check whether models adequately fit the 

data, I used posterior predictive checks with 
Bayesian p values based on means, standard 
deviations, and discrepancy (sums of squares) of 
the data and from simulated data from the fitted 
models (Gelman and Hill 2007, Hobbs and Hoo-
ten 2015). Bayesian P values were calculated as 
the percentage of iterations for which the metric 
(i.e., mean, SD, discrepancy) from the observed 
data exceeded that of the simulated data where 
extreme values (close to zero or one) indicate 
poor fit. 

RESULTS 

I was able to include 498 counts over 28 sites 
in analyses. The three most common species 
observed were mallard (Anas platyrhynchos), 
northern shoveler (Spatula clypeata), and gadwall 
(Mareca strepera). For all models, trace plots indi-
cated convergence for all parameters and Gel-
man and Rubin’s convergence diagnostic 
was ≤ 1.01 for all parameters. Little evidence of 
lack of fit was revealed for models from posterior 
predictive checks; all Bayesian p values were 
between 0.5 and 0.7. 
For the first stage of modeling, including week 

as a quadratic or a cubic term resulted in very 
similar DIC scores (within 0.1 DIC; Appendix S2: 
Table S1). Both models were substantially better 
than models including week in linear form 
(ΔDIC = 32.6) or a null, intercept-only model 
(ΔDIC = 148.7). The cubic coefficient’s 95% 
credible interval overlapped zero (−0.001–0.005; 
Appendix S2: Table S1), and the predicted values 
were very similar between cubic and quadratic 
models. Therefore, I used the quadratic form of 
week as a count-level predictor in subsequent 
modeling. 
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For the second stage of modeling, the 95% 
credible interval for the energy availability coeffi-
cient excluded zero (0.49, 95% CI 0.26–0.66), 
whereas the credible interval for the vegetation 
density coefficient included zero (0.17, 95% CI − 
0.84–1.03). Therefore, I only included energy 
availability as a site-level predictor in subsequent 
modeling. 

I included 10 models in the third stage of mod-
eling. Based on DIC, the best model included 
additive effects of energy availability, distance to 
reservoir, and easting (Table 1). There were four 
competing models (Table 1) so I identified the 
model on which to base inference by looking at 
whether credible intervals overlapped zero. In 
the top model, credible intervals for energy avail-
ability (0.49, 0.30–0.67) and site size (0.004, 
0.002–0.006) excluded zero, easting was border-
line (0.01, 0.0005–0.01), and distance to reservoir 
included zero (−0.02, −0.06–0.01). In the second 
best model, the credible interval for the interac-
tion term between distance to reservoir and 
energy availability included zero (0.009, 
−0.004–0.03). Therefore, I generated predictions 
and based inference on the model including 
energy availability, site size, and easting in an 
additive relationship. Energy availability, east-
ing, and site size were positively related to duck 
counts (Fig. 1). Accounting for uncertainty in 
energy availability resulted in substantially 
wider credible intervals for both predicted duck 
counts and the group-level effect of energy avail-
ability on duck counts (Fig. 2). 

Table 1. Model selection results for predicting duck 
counts based on energy density (food), site size, 
distance to nearest large reservoir, distance to river, 
and UTM coordinate easting (east). 

Model ΔDIC Penalty 

Food + reservoir + east 0 103.4 
Food × reservoir 0.6 105.2 
Food 0.7 103.8 
Food + east 0.7 103.4 
Food × river 1.4 106.0 
Food + reservoir 1.9 104.5 
Food + reservoir + river 2.3 104.9 
Food + river 2.7 105.1 
Food + river + east 5.2 106.1 
Food + reservoir + river + east 6.8 106.6 

Note: Size was included in all models. 

DISCUSSION 

Increasingly, investigators are recognizing the 
value of accounting for various sources of uncer-
tainty in ecological studies. Observation uncer-
tainty in predictor variables is one source that is 
rarely accounted for in ecology but can have sub-
stantial influence on overall inference (Carroll 
et al. 2006). Using a case study of duck habitat 
use among sites, I found that accounting for 
observation uncertainty in site-level covariates 
resulted in substantially less confidence in model 
predictions and effect sizes than if this uncer-
tainty was ignored. The case study presented in 
this paper represents a common situation in eco-
logical research where site-level predictors con-
tain observation uncertainty, and my analyses 
confirm that researchers should account for this 
uncertainty in predictors or risk severely overes-
timating precision. 
With the increasing use of Bayesian analyses, 

many researchers who are familiar with coding 
Bayesian models should find it straightforward 
to add a term to account for predictor uncer-
tainty in their analyses. A simple rule that 
researchers can use to indicate whether account-
ing for predictor uncertainty is required is if they 
were planning on calculating site or some other 
group-level means of a predictor variable before 
inclusion in a model, then there is uncertainty in 
that variable and it should be accounted for. 
Studies involving vegetation sampling are one of 
the most common occurrences of predictor 
uncertainty because researchers typically collect 
a large amount of vegetation data to attempt to 
accurately represent a site and then use site-level 
means as covariates (e.g., Saveraid et al. 2001, 
Behney et al. 2018). In this situation, researchers 
can simply include a submodel in the overall 
hierarchical model that predicts the site-level 
vegetation means and use the predictions as a 
covariate in the primary model. 
In my case study, even after accounting for 

observation uncertainty, I detected a positive 
effect of energy availability on duck use. My 
results are consistent with other studies of duck 
habitat use during the nonbreeding season in 
that food or energy density was positively 
related to duck use but other factors contribute 
to how ducks distribute themselves among sites 
(Brasher 2010, O’Shaughnessy 2014, Osborn et al. 
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Fig. 1. The intercept in the count model was allowed to vary by site and site-level predictors were used to 
explain variation in the intercept (left column). The intercept was on the log scale, because I used a log link func-
tion in the count model. Back-transformed values of predicted number of ducks site−1 d−1 at the mean date dur-
ing spring are shown in the right column. Predicted values are shown with heavy solid or dashed lines and 95% 
credible intervals are shown with dotted lines. Each circle represents the intercept for that site and its measured 
energy availability, size, or easting. The top row shows the effects of total energy at a site that is found at water 
depths less than 50 cm. The second row shows the effect of UTM easting coordinate, and the third row shows 
the effects of site size. All predictions were made from the model including energy + easting + size. When show-
ing the effects of individual variables, other variables were held constant at their mean. 
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Fig. 2. Predicted number of ducks site−1 d−1 during the spring from a model incorporating uncertainty in esti-
mates of energy availability and a model ignoring uncertainty in energy availability estimates. Relationship 
between energy availability and the intercept of the count model incorporating and ignoring uncertainty in sam-
pled energy availability (right column). Predicted values are shown with heavy solid or dashed lines and 95% 
credible intervals are shown with dotted lines. 

2017). I also found that site size and easting both of sites other than energy availability. If these fac-
contributed to explain duck counts in northeast- tors are ignored, sites may not be exploited by 
ern Colorado. Within the range of site-level pre- ducks as predicted, resulting in a suboptimal use 
dictor values observed in this study, energy of resources for creation/enhancement of habitat 
availability and site size appeared to have the projects. 
greatest effect on the number of ducks observed In this study, site size and easting were both 
at a site. In other studies, factors that have been positively related to intensity of duck use of sites. 
shown to influence duck use of sites during Larger sites have previously been shown to sup-
migration and winter include wetland type or port more ducks (Brasher 2010), and based on 
vegetation patterns in wetlands (Hagy and my results, the finding is not due to larger sites 
Kaminski 2012, Beatty et al. 2014, O’Shaughnessy containing more total energy. My estimates of 
2014, Osborn et al. 2017) and wetland structure/ total energy availability only included energy 
morphology (Brasher 2010, Osborn et al. 2017) found at depths shallow enough to be accessible 
and landscape characteristics (Brasher 2010, to dabbling ducks. Larger sites contained propor-
Beatty et al. 2014). These studies did not account tionally less shallow water habitat than smaller, 
for observation uncertainty in predictor values shallower sites (Behney 2020), and thus, energy 
which may be why they were able to detect an availability was not positively correlated with 
effect of vegetation density and I was not. Ener- size (r = −0.47). The relationship between site 
getic carrying capacity models used for allocat- size and intensity of duck use was positive so it 
ing resources for habitat acquisition or appears that ducks were selecting larger sites for 
restoration assume that energy provided through reasons other than energy availability of the site. 
these projects will be available and consumed by Ducks generally select larger, open water sites 
ducks (Central Valley Joint Venture 2006, Soul- for roosting (Hopper 1968, Ringelman et al. 
liere et al. 2007, Playa Lakes Joint Venture 2008). 1989), possibly due to the lower perceived preda-
However, this and other research has shown that tion risk in open water (Behney et al. 2018), 
a variety of factors (e.g., geographic location, site which may explain why we observed more 
size, vegetation patterns) can influence duck use ducks at larger sites. Furthermore, larger sites 
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generally support greater species richness 
(MacArthur and Wilson 1967, Rosenzweig 1995, 
Connor et al. 2000), which may result in more 
total individuals at each site. 

My finding of more ducks using sites further 
east suggests there is a gradient of regional duck 
abundance ranging from more ducks in far east-
ern Colorado and fewer ducks as one moves 
west. Colorado lies at the far western edge of the 
Central Flyway, and if fewer ducks use the fringe 
of the flyway, I would expect a positive relation-
ship with easting within Colorado. Alternatively, 
there tend to be more water features at the west-
ern edge (i.e., Colorado Front Range) of my 
study area, which may also result in fewer ducks 
on each individual water feature. However, the 
effect of easting was more a function of the 
extreme east sites supporting more ducks rather 
than the extreme western sites supporting fewer 
(Fig. 1). 

Interestingly, I did not detect effects of distance 
to reservoir or river on duck counts. Ducks are 
known to select large reservoirs for roosting 
habitat (Hopper 1968, Ringelman et al. 1989) and 
would forage nearby if their goal was to mini-
mize energy expenditure. In a meta-analysis, 
mean foraging flight distance for dabbling ducks 
was 5.1 km (Johnson et al. 2014). Many of my 
sites (n = 28) were farther than this reported 
mean foraging flight distance (range = 0–50 km), 
which may explain why I did not observe a rela-
tionship with distance to reservoir. Ducks are 
known to use the South Platte River, particularly 
during cold temperatures when other types of 
water features (e.g., reservoirs, wetlands) freeze 
(Hopper 1968, Ringelman et al. 1989). My study 
took place during spring, after water features 
thawed, so there likely was little selective pres-
sure for ducks to use the river when so many 
other water features were available. 

I attempted to estimate detection probability 
during duck counts through double counting. 
However, I always detected at least as many 
ducks during flush counts than vantage surveys 
so I only used flush counts in analysis and did 
not estimate detection probability. I acknowledge 
that failing to account for detection probability 
may have resulted in some bias in the count data 
but believe this to be minimal for two reasons. 
Firstly, the number of ducks I typically counted 
was low (75% of observations were ≤ 20 ducks, 

median = 5), which makes it easier to accurately 
count all individuals. Secondly, the main factor 
that might limit an observer’s ability to see and 
count all ducks present at a site was vegetation 
that limited visibility. By flushing ducks out of 
any vegetation, observers could accurately count 
ducks as they flushed into the air. Flush counts 
are a relatively common way of counting ducks 
in areas where detection probability may other-
wise be < 1 (Linz et al. 1998, St. James et al. 2013, 
Lindstrom et al. 2020). 
Inferences from this study are limited to spring 

migration and should not be used to infer pat-
terns of habitat use during fall migration. Distur-
bance from waterfowl hunting plays a large role 
in habitat selection during the fall (Lancaster 
et al. 2015, Palumbo et al. 2019) but is absent dur-
ing the spring. Therefore, managers wishing use 
this information to guide where habitat restora-
tion takes place should keep in mind that habitat 
selection during fall migration may be different 
than what I present here. There is some evidence 
that ducks migrate faster and have shorter stop-
over durations during spring than fall (Nilsson 
et al. 2013), presumably to reach the breeding 
grounds earlier to increase reproductive success 
(Dzus and Clark 1998). Therefore, they may be 
using different migration corridors during spring 
to reach the breeding grounds early. I recom-
mend future research incorporating both fall and 
spring habitat selection in the same region to dis-
cern any differences between the two periods. 
These results can be incorporated into habitat 

planning strategies for nonbreeding ducks in a 
number of ways. Firstly, they confirm that pro-
viding abundant energy for ducks to consume 
should be a primary goal of habitat conservation 
or restoration projects. Secondly, factors other 
than energy can also be used to guide where and 
how habitat projects are carried out. For exam-
ple, all other factors being equal, projects that are 
closer to reservoirs and farther east in Colorado 
will tend to provide the greatest value to ducks 
during spring. Furthermore, I show that Baye-
sian hierarchical models represent a good way to 
account for uncertainties that arise at multiple 
levels (i.e., hierarchical). This approach could be 
incorporated into many ecological studies to 
more accurately estimate uncertainty. Not only 
does appropriately accounting for such uncer-
tainty present a more accurate depiction of 
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reality but also results in better predictions (Cres-
sie et al. 2009). 
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