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ABSTRACT: A key component of wildlife disease surveillance is determining the spread and
geographic extent of pathogens by monitoring for infected individuals in regions where cases have
not been previously detected. A practical challenge of such surveillance is developing reliable, yet
cost-effective, approaches that remain sustainable when monitoring needs are prolonged or
continuous, or when resources to support these efforts are limited. In order to improve the
efficiency of chronic wasting disease (CWD) surveillance in Colorado, United States, we
developed a weighted surveillance system exploiting observed differences in CWD prevalence
across demographic strata within infected mule deer (Odocoileus hemionus) populations. We used
field data to estimate sampling weights for individuals from eight demographic strata distinguished
by differences in apparent health, sex, and age. In this system, individuals from a sample source
with high prevalence and low inclusion probability (e.g., clinical CWD ‘‘suspects’’) received $10.3
times more weight than those from a source with low prevalence and high inclusion probability
(e.g., apparently healthy, hunter-harvested individuals). We simulated use of this alternative
surveillance system for a deer management unit in Colorado and evaluated the potential effects of
using biased weights on the probability of failing to detect CWD and on relative surveillance costs.
We found that this system should be transparent, cost-effective, and reasonably robust to the
inadvertent use of biased weights. By implementing this, or a similar, weighted surveillance
system, wildlife agencies should be able to maintain or improve current surveillance standards
while, perhaps, collecting and examining fewer samples, thereby increasing the efficiency and cost-
effectiveness of ongoing CWD surveillance programs.

Key words: Chronic wasting disease, disease detection, mule deer, Odocoileus hemionus,
prion, sampling, weighted surveillance.

INTRODUCTION

Surveillance is a key component of
effective wildlife disease monitoring and
control. Surveillance typically focuses on
estimating current levels of disease in areas
of known occurrence and on monitoring
both peripheral and distant areas to deter-
mine the geographic distribution and estab-
lishment of new disease foci. For apparently
emerging wildlife diseases, determining
their broad geographic distribution may be
particularly critical to assessing implications
and prospects for control. It follows that
developing efficient approaches for detect-
ing new disease foci could be valuable to
wildlife managers and agencies responsible
for surveillance within their jurisdictions.

A recently emerging prion disease of
wildlife, chronic wasting disease (CWD),
was first recognized in captive mule deer
(Odocoileus hemionus; Williams and

Young, 1980) and elk, and was subse-
quently diagnosed in free-ranging elk
(Cervus elaphus nelsoni), mule deer,
white-tailed deer (Odocoileus virginia-
nus), and moose (Alces alces) in scattered
foci across North America (Spraker et al.,
1997; Williams, 2005; Baeten et al., 2007).
Since 2002, considerable resources have
been spent by wildlife management and
animal health agencies and their partners
around the world in conducting surveil-
lance to better define the geographic
distribution of CWD. Current CWD
surveillance efforts in North America
focus mainly on monitoring regions where
the disease has as not yet been detected
and on estimating prevalence in known
infected areas; however, approaches for
accomplishing the latter seem more
straightforward and efficient than for the
former (Samuel et al., 2003). In Colorado,
United States, for example, monitoring for
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CWD in populations where cases have,
thus far, not been detected involves sam-
pling cervids from a variety of sources
including vehicle-killed animals, animals
culled or recovered dead as CWD ‘‘sus-
pects,’’ hunter-killed (or ‘‘harvested’’) ani-
mals, and from other sources such as
predator-killed or confiscated animals
(Miller et al., 2000; Hibler et al., 2003;
Krumm et al., 2005). Among submissions
from hunters, there are generally numerous
individuals from various demographic seg-
ments of the state’s hunted cervid popula-
tions. Past surveillance methods treated
these various sources that contributed to
the surveillance stream—hereafter referred
to as ‘‘strata’’—separately for purposes of
calculating needed sample sizes and did not
always combine data from these strata.
Consequently, this traditional approach
failed to capitalize on available information
concerning rather large differences in
apparent CWD prevalence among these
strata (Miller et al., 2000, 2008; Miller and
Conner, 2005; Krumm et al., 2005).

To improve the efficiency of CWD
surveillance in Colorado, and perhaps
elsewhere, we developed a weighted sur-
veillance system that makes use of all
available information on stratum-specific
prevalence. Similar approaches have been
espoused by Cannon (2002) and have been
specifically applied to bovine spongiform
encephalopathy monitoring in European
Union member states (Wilesmith et al.,
2004). For any, user-specified probability
of detecting disease (e.g., 95% probability
of detecting at least one case where
prevalence is $1%), weighted surveillance
not only provides rigorous estimates of
sample sizes to demonstrate that a region is
nominally ‘‘disease-free’’ using combined
sample sources, but it should also be more
cost-effective than traditional approaches.
The weighted surveillance system de-
scribed here is intended to be used in
aggregating data from a stratified sample
collected from primary sampling units,
selected a priori, based on some biologi-
cally-relevant spatial sampling scheme.

Although we recognize the importance of
having a spatial sampling scheme to
account for the spatial variability and focal
nature of CWD (Samuel et al., 2003;
Conner and Miller, 2004; Joly et al., 2006;
Nusser et al., 2008), describing the design
of such a spatial sampling scheme is beyond
the scope of this paper. Consequently, we
limit our discussion to the design and
application of a weighted sampling system
for detecting new CWD foci.

MATERIALS AND METHODS

Derivation of the weighted surveillance system

The first step in developing this weighted
surveillance system was to estimate the
weights for each specific stratum in the
CWD surveillance ‘‘stream.’’ To estimate these
weights, we made the following assumptions:
The number of positive cases at the time of the
survey in each of ith strata was independently
distributed as Poisson (li) random variables,
individuals were randomly selected within the
ith stratum for sampling, and relative preva-
lence within each stratum was constant across
different population prevalence levels. Based
on these assumptions, the maximum likelihood
estimates for the weights (ŵi) were:

ŵwi~
p̂pi

p̂p0

, ð1Þ

where p̂i5xi/ni was the maximum likelihood
estimate of the prevalence for the ith stratum
and p̂0 was the corresponding estimate for the
baseline stratum. The weight (w0) for the
‘‘baseline stratum’’ was defined to be 1; this
baseline stratum was considered the reference
stratum to which the relative weights for the
remaining strata were scaled. Both pi and p0

can be empirically estimated from historic
data, when available. For an in-depth deriva-
tion of the estimated weights and variances,
interested readers are referred to Appendix A.

The next step in implementing this surveil-
lance system was to determine when an
adequate number of samples had been col-
lected (i.e., to calculate a stopping point for
surveillance). To facilitate this, we employed a
points system (Cannon, 2002; Wilesmith et al.,
2004). Under this system, every sample
entering the surveillance stream received a
number of weight points (ŵi), based on its
respective stratum membership, and sampling
continued until the total number of points
summed to the target (t). The target, or
cumulative number of points needed before
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enough samples have been collected to cease
surveillance, was a function of the desired
probability of detecting at least 1 CWD-
positive case (12a) and of the specified design
prevalence for the baseline stratum. This value
was calculated (Dohoo et al., 2003) as

t~
{ln að Þ
pdesignf

, ð2Þ

where pdesign was the specified design preva-
lence for p0 (i.e., the prevalence at which the
surveyor wishes to detect at least 1 CWD-
positive case in the baseline stratum), 12a was
the probability of detecting at least 1 CWD-
positive case, and f was the sensitivity of the
test. Thus, under weighted surveillance, sam-
ple collection from the various strata continues
until the following is true:

t~
Xm

i~0

niŵwi, ð3Þ

where ni5the number of samples in the
surveillance stream collected from the ith
stratum and ŵi5the estimated weight for the
ith stratum.

A potential concern in using weighted
surveillance is the effects of biased weights
(i.e., what happens when the estimated weights
are above or below the unknown true weights).
Such bias can lead to an over- or underestima-
tion of the probability of detecting the disease.
The amount of increase or reduction in disease
detection probability, and the associated num-
ber of samples needed to reach the target value,
depends on both the bias in the individual
weights and the number of samples from each
stratum. In Appendix B, we provide equations
for estimating the bias in the number of samples
required for achieving the target value as well as
the bias in disease detection probability when
weights are under- or overestimated relative to
the true weight. Using simulations, we also
examined, in more detail, the effects of varying
levels of bias (shown below).

Several important factors about this weight-
ed surveillance system merit further consider-
ation. First, the weights, as described, are
analogous to risk ratios. These types of ratios
have been extensively studied (Cox, 1972;
Arnanda-Ordaz, 1983; Bedrick et al., 1997).
Second, we assumed thereafter that sensitivity
of the CWD diagnostic test was one (i.e., f51).
Third, the pdesign parameter used to calculate
the target value is specified by the user and
corresponds to the minimum prevalence level
at which the user wishes to detect CWD in the
baseline stratum (e.g., ‘‘a goal of detecting at
least one case where CWD prevalence is $1%
in adult males’’). Fourth, the user also needs to

choose the baseline population segment to
which the specified design prevalence applies
and to which other strata are scaled (‘‘adult
males’’ in the previous example). Although any
stratum can be selected arbitrarily as the
baseline, we recommend that this be a
population stratum for which sample sizes
are consistently largest, or a stratum that is
sensitive to changes in prevalence. Based on
the foregoing guidance, we chose harvested
adult ($2 yr old) male mule deer as the
baseline stratum in the following example
using Colorado field data.

Estimating weights using Colorado mule deer data

To illustrate use of the weighted surveil-
lance approach, we calculated sampling
weights for CWD surveillance in mule deer
in Colorado, using data collected from 2003–
2006, in parts of Colorado where CWD is
known to occur. Data (Table 1) were from
20,400 deer from various sources that entered
the surveillance stream and were tested for
CWD as described elsewhere (Miller et al.,
2000; Hibler et al., 2003); samples from live-
animal testing, captive facilities, or culling as
part of research studies were not included
because these represented few samples and
were from sources that contributed only
sporadically to the surveillance stream. We
divided the submitted cases into eight strata
distinguished by differences in apparent
health, sex, and age of deer included in each
stratum: 1) clinical CWD ‘‘suspect’’ females
.1 yr old; 2) clinical CWD suspect males
.1 yr old; 3) harvested ‘‘adult’’ ($2 yr old)
males (the baseline stratum); 4) harvested
adult females; 5) harvested ‘‘yearling’’ (.1 but
,2 yr old) males; 6) harvested yearling
females; 7) harvested ‘‘fawns’’ (,1 yr old, of
either sex); or 8) all ‘‘other’’ dead deer (of both
sexes and all ages except fawns). The ‘‘other’’
stratum included individuals recovered as
vehicle-kills, predator-kills, and poaching sei-
zures. Each of these strata received a unique
weight (Table 1) calculated using equation (1);
we estimated an associated SE for each weight
using equation (9) in Appendix A.

Simulations to investigate properties of the
weighted surveillance system

To examine the potential performance of
the weighted surveillance system, we first
examined the effects of employing biased
weights (i.e., weights that were either greater
or less than the true weight) on the probability
of detecting CWD where true prevalence5
0.01 in harvested adult male deer, our baseline
stratum. Initially, we used the simplest case
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(i.e., where all samples in the surveillance
stream came from one stratum) to illustrate
these effects using the stratum weight from
Table 1 as the ‘‘true’’ simulation weight. It is
important to note that we only assumed that
estimated weights from Table 1 were the ‘‘true’’
weight for simulation purposes. We also inves-
tigated the effects of these biases on relative
total surveillance costs. We repeated this
analysis using two different strata, suspect
female deer and harvested yearling males,
because these strata represented the highest
and lowest (aside from fawns) estimated
weights. We examined biases of 0–50% in the
estimated weights. We used equations (11) and
(13) in Appendix B to calculate the bias in 12a,
sample size, and the relative costs arising from
the use of biased weights. To calculate relative
cost differences, we assumed an average cost of
$75.00 USD per submission, which was based
on the estimated average testing and processing
cost for a sample submitted into the Colorado
Division of Wildlife’s (CDOW) surveillance
stream. We did not estimate or include costs
of acquiring samples from various strata because
CDOW field and laboratory personnel acquire
such samples (e.g., vehicle kills, culled clinical
suspects, poaching cases, etc.) as part of normal
wildlife health monitoring and law enforcement
activities. Thus, in Colorado, there are relatively
few differences in acquiring samples from
different strata.

To further examine the properties and
efficacy of this technique using a more realistic
scenario, we created a modeled population of
mule deer and estimated, via simulation, the
probability of detecting at least one CWD-
positive individual (12a) with this weighted
surveillance system when prevalence was set at
0.01 for the harvested adult male population.
For this simulation, we used mule deer

population estimates, sex-age ratios, mortality,
and harvest data for 2006 from a data analysis
unit (DAU) located in southwestern Colorado
(DAU D-19; B. Banulis, CDOW, pers.
comm.). We chose this DAU because it was
apparently CWD-free (Colorado Division of
Wildlife, 2009) and relatively good demo-
graphic data were available. The population
size was estimated at ,40,000 deer. We
partitioned this population into the eight strata
described above using the 10-yr average of sex
and age ratios and the cause-specific mortality
estimates from radio-collared deer (CDOW
Big Game Harvest Survey, unpubl. data).
Because some data were limited for males
when stratifying the population into the
various demographic strata, cause-specific
mortality probabilities for males were based
on estimates for females, except for harvest
probabilities which were estimated for both
sexes. To determine the probability of an
individual entering the surveillance stream
from the ith stratum, we used 2006 statewide
estimated harvest rates in conjunction with
2006 CWD test submission rates from DAUs
where CWD had been confirmed. We used
representative harvest and surveillance data
from elsewhere because few samples entered
the surveillance stream from DAU D-19 in
2006, thereby precluding reliable estimation of
DAU-specific submission parameters. We
simulated sampling individuals from the pop-
ulation based on these sampling probabilities
(Table 2), with each individual being assigned
to one of the eight strata. Once an individual
was selected, it was determined to be ‘‘posi-
tive’’ if a uniform random variable was less
than or equal to the stratum-specific preva-
lence; the stratum-specific prevalence was
based on the prevalences calculated from the
Colorado data described above (Table 1), with

TABLE 1. The stratum-specific sample size, sample prevalence, estimated weights, and associated standard
errors, based on surveillance results for mule deer in Colorado from 2003–2006, for use in a weighted
surveillance system.

Stratum Prevalence Sample size Positives
Total sample

size
Total

positives Weights
SE of

weights

Suspect—female 0.36 111 40 20,400 595 11.57 1.60
Suspect—male 0.32 125 40 20,400 595 10.27 1.46
Other 0.06 1,300 77 20,400 595 1.90 0.24
Harvest—adult male 0.03 10,046 313 20,400 595 1.00 NAa

Harvest—adult female 0.02 5,782 104 20,400 595 0.58 0.06
Harvest—yearling female 0.01 645 9 20,400 595 0.45 0.15
Harvest—yearling male 0.01 1,392 11 20,400 595 0.25 0.08
Harvest—fawn 0.00 999 1 20,400 595 0.03 0.03

a NA 5 Not applicable (Baseline stratum weight is defined to be 1.00).
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prevalence50.01 assumed in the harvested
adult male stratum.

To evaluate the properties of the weighted
surveillance system, we first used the estimated
weights from Table 1 as the ‘‘true’’ weights for
our simulations, as truth must be established
nominally to examine bias effects. Each sampled
individual was weighted according to the
calculated weight for its assigned stratum. We
sampled until the sum of the weights for
sampled individuals equaled the target value
of 300 (i.e., the cumulative number of weight
points needed to assure detection of at least one
case with 95% confidence when prevalence is
0.01 among harvested adult males). We ran 500
repetitions of this simulation. We then calculat-
ed both the probability of detecting a CWD-
positive individual (12a) in the sample and the
mean number of samples needed to meet the
target. We estimated the cost differential under
the weighted surveillance system based on the
mean number of samples required to reach the
target and on a cost of $75 USD for testing each
individual submitted. We also examined the
distribution of the ‘‘waiting time,’’ which we

interpreted to be the cumulative number of
samples required before detecting the first
positive case, and we used a normal kernel
density estimator to provide a smoothed fre-
quency distribution. We then repeated the
procedure and used weights with biases ranging
from 610250% the true simulation weights in
order to investigate the performance of the
system when weights were biased.

In addition, we conducted simulations incor-
porating a mixed bias procedure wherein the
bias again ranged from 10250%, but was
negative (i.e., underestimated the ‘‘true’’ value)
for suspect males, suspect females, and the
‘‘other’’ stratum and was positive for the
remaining strata. Within the mixed bias simu-
lations, we also evaluated use of a traditional
surveillance system that assumed every stratum
was equally weighted (i.e., all the weights were
one regardless of sample source).

Finally, to study the effects of increased
sampling from the higher-prevalence strata, we
examined the effects relative to the sampling
probabilities, as described above (subsequently
classified as ‘‘no increase’’ in the simulation

TABLE 2. Stratum-specific prevalence and sampling probabilities based on 2006 demographic data from
mule deer (Odocoileus hemionus) in Data Analysis Unit (DAU) D-19 used in the simulations evaluating the
properties of the weighted surveillance system for detecting chronic wasting disease in Colorado mule
deer populations.

Manipulation of sampling
probability Stratum identification Prevalence Sampling probability

No increase Suspect—female 0.116 0.010
Suspect—male 0.103 0.010
Other 0.019 0.109
Harvest—adult male 0.010 0.392
Harvest—yearling male 0.003 0.042
Harvest—adult female 0.006 0.279
Harvest—yearling female 0.005 0.016
Harvest—fawn 0.000 0.142

1% increase Suspect—female 0.116 0.020
Suspect—male 0.103 0.020
Other 0.019 0.119
Harvest—adult male 0.010 0.386
Harvest—yearling male 0.003 0.036
Harvest—adult female 0.006 0.273
Harvest—yearling female 0.005 0.010
Harvest—fawn 0.000 0.136

5% increase Suspect—female 0.116 0.060
Suspect—male 0.103 0.060
Other 0.019 0.159
Harvest—adult male 0.010 0.349
Harvest—yearling male 0.003 0.032
Harvest—adult female 0.006 0.236
Harvest—yearling female 0.005 0.006
Harvest—fawn 0.000 0.099
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results), by increasing the sampling probability
of the suspect male, suspect female, and other
strata by 1% and 5% each, while commensu-
rately decreasing sampling probabilities across
the remaining strata by a total of 3% and 15% to
ensure, for simulation purposes, that the total
sampling probability was 1 (Table 2). Subse-
quently, we examined the statistics previously
described. All analyses were performed in SAS
9.2 (SAS Institute Inc., 2008).

Simulations to investigate sample
size requirements

For jurisdictions in which CWD has already
been detected, responsible management agen-
cies may want to develop their own weighted
surveillance system rather than use values
estimated for Colorado mule deer. Therefore,
we conducted additional simulations to esti-
mate the number of samples that must enter
the surveillance stream in order to provide
adequate information to estimate strata
weights accurately. We used the strata-specific
sampling probabilities, calculated as described
above, and set the true simulation weights for
each stratum equal to our estimated weights
for Colorado (Table 1). We set prevalence in
the harvested adult male stratum, our baseline
stratum, to 0.03, which seemed to be a
reasonable estimate for CWD-endemic areas
in other jurisdictions. We then created sur-
veillance datasets of 1,000, 5,000, 11,000, and
15,000 samples, calculated the estimated
weights for each stratum using equation (1),
and repeated this process for 1,000 replica-
tions. To examine the effects of small sample
size on error in the estimated weights, we
calculated the mean absolute error, mean
percent error, and the probability that the
direction of the bias would be positive across
the 1,000 repetitions for each sample size. We
used the mean absolute error, instead of mean
bias, to look at the mean magnitude of error
due to small sample size because the latter
would be obscured by averaging positive and
negative bias values. We focused on the
probability of the bias being positive because
positive bias will lead to fewer samples than
necessary being collected for surveillance,
resulting in a decreased disease detection
probability. Also, we expected strata with small
weights would tend to be negatively biased.

RESULTS

Estimated weights using Colorado mule deer data

Estimated weights and their associated
standard errors for the eight different

strata in our weighted surveillance system
are in Table 1. The greatest weights were
attributed to female and male CWD
suspects (about 12 and 10 points, respec-
tively), and the least weight was associated
with harvested fawns (0.03), as would be
expected given the prevalence and overall
sample sizes of these strata. We used these
estimated weights as the ‘‘true’’ weights in
subsequent simulations.

Simulations to investigate properties of the
weighted surveillance system

In the simplest simulation cases, where
all samples came from either CWD suspect
females (Fig. 1A) or from harvested year-
ling males (Fig. 1B), 12a was not biased
(i.e., equaled 0.95) when unbiased (‘‘true’’)
weights were used. However, using biased
weights in simulations influenced both
disease detection probability and the costs
of associated surveillance; simulated under-
estimation of true simulation weights in-
creased the probability of detecting at least
one case (12a) and overestimation de-
creased that probability (Fig. 1A, B). Con-
versely, relative surveillance cost increased
with negative bias in the weights, decreased
with positive bias, and was most pro-
nounced in the simulation based on har-
vested yearling males (Fig. 1B).

More detailed simulations, based on
sampling a hypothetical deer population
where 1% of the adult males were infected,
yielded similar results. When the ‘‘true’’
simulation weights were used, 12a was un-
biased, but as bias in the weights increased,
the bias in the probability of detecting a
case also increased (Fig. 2). However, in
simulations where sampling probability was
not increased and weights were only biased
within 30% of true values, the bias in 12a
was relatively small, and the probability of
detecting a case remained $0.9 (Fig. 2).
Increasing sampling probabilities in the
higher prevalence strata did not affect the
overall pattern in the simulated effects of
using biased weights (Fig. 2), and 12a
remained unbiased when the true simula-
tion weights were used, regardless of the
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FIGURE 1. Effects of using biased weights on the probability of detecting a positive case (12a; black line)
and the associated surveillance cost (‘‘relative cost’’; gray line) in a simulated chronic wasting disease (CWD)-
infected mule deer population sampled under the proposed weighted surveillance system. For comparison,
the influences of bias are illustrated under scenarios where all samples entering the surveillance stream came
from either (A) CWD suspect female deer or (B) harvested yearling male deer, representing the highest and
second-lowest weighted demographic strata in the proposed system (Table 1). In all simulations, prevalence in
the baseline stratum (adult males) was 0.01, and the nominal target detection probability was 0.95.
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sampling probabilities (Fig. 2). When pos-
itively biased weights were employed, the
resulting bias in 12a tended to be slightly
greater in simulations with increased sam-
pling of high-prevalence strata (Fig. 2). The
increasing relative surveillance costs associ-
ated with negatively biased weights were
somewhat offset in simulations where
sampling probabilities were increased for
high-prevalence strata (Fig. 2).

Comparable patterns occurred in simu-
lations where the direction of the bias was
mixed among the strata (Fig. 3). The overall
bias in 12a was relatively negligible, in
simulations where weights were negatively

biased for the suspect and other strata, and
were positively biased for the rest of the
strata (Fig. 3). The effects on relative costs
were also diminished in simulations with
mixed bias in the weights (Fig. 3).

The traditional surveillance approach
(i.e., all weights being equal) represents an
extreme case where the direction of the
bias in weights is mixed across strata.
Comparing our weighted surveillance sys-
tem, using unbiased weights, to the tradi-
tional system revealed that implementing
the weighted system in a large Colorado
DAU would cost $315 USD more than the
current system. However, as the probability

FIGURE 2. Effects of using weights biased in a constant direction across strata (x axis) on the probability of
detecting a positive case (12a; black lines) and on the associated surveillance cost (‘‘relative cost’’; gray lines)
in a simulated chronic wasting disease (CWD)-infected mule deer population sampled under the proposed
weighted surveillance system. The three line styles represent different levels of emphasis placed on sampling
from ‘‘high-prevalence’’ strata (CWD suspect males, CWD suspect females, and ‘‘other’’): No increase in
sampling probabilities of high-prevalence strata (solid lines), sampling probabilities of these strata increased
by 1% (dashed lines), or sampling probabilities of these strata increased by 5% (dotted lines); Table 2 lists the
stratum-specific sampling probabilities used in simulations under these three scenarios. In all simulations,
prevalence in the baseline stratum (adult males) was 0.01, samples entered the surveillance stream from
multiple sources, and the nominal target detection probability was 0.95.
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of sampling higher-prevalence strata was
minimally increased by 1% and 5%—
reflecting a shift in emphasis toward
collecting clinical CWD suspect and ‘‘oth-
er’’ dead deer—weighted surveillance be-
came considerably more cost-effective, with
projected savings of $3,863 and $11,682
USD, respectively. Simulations also dem-
onstrated that fewer samples were required
before detecting the first positive case when
sampling effort focused on higher-preva-
lence strata: The distribution of ‘‘waiting
times’’ shifted closer to zero, with increased
emphasis on sampling higher-prevalence

strata; mean values were 79, 69, and 49 for
no increase, and a 1% and 5% increase in
sampling probabilities, respectively (Fig. 4).

Simulations to investigate sample
size requirements

Our simulations revealed that, with a
sample size of at least 5,000 CWD test
results, it appears that the mean percent
error for strata with true simulation weights
.1 will be #20% (Table 3). Strata with
larger mean percent error values were
harvested fawns, harvested yearling males,
and harvested yearling females; although

FIGURE 3. Effects of using weights biased in mixed direction across strata (x axis) on the probability of
detecting a positive case (12a; black lines) and on the associated surveillance cost (‘‘relative cost’’; gray lines)
in a simulated chronic wasting disease (CWD)-infected mule deer population sampled under the proposed
weighted surveillance system. Weights were biased negatively for the three ‘‘high-prevalence’’ strata (CWD
suspect males, CWD suspect females, and ‘‘other’’) and were biased positively for the remaining five
demographic strata in the proposed weighted surveillance system. The three line styles represent different
levels of emphasis placed on sampling from high-prevalence strata: No increase in sampling probabilities of
high-prevalence strata (solid lines), sampling probabilities of these strata increased by 1% (dashed lines), or
sampling probabilities of these strata increased by 5% (dotted lines); Table 2 lists the stratum-specific
sampling probabilities used in simulations under these three scenarios. In all simulations, prevalence in the
baseline stratum (adult males) was 0.01, samples entered the surveillance stream from multiple sources, and
the nominal target detection probability was 0.95.
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these strata had much larger mean percent
error values ($0.68), their mean absolute
errors were small (i.e., #0.33) at a sample
size of 5,000 CWD test results, most likely
because prevalence in these groups was
low. Thus, for strata with small weights, a
much-larger number of samples must be
acquired before error drops significantly.
Simulation results also demonstrated that,
across most sample sizes and strata weights,
on average results tend to be negatively
biased, although the probability of a posi-
tively biased weight for most strata and
sample sizes is nearly 50% (Table 3). This
was expected because equation (1), which
was used to estimate the weights, is an
asymptotically unbiased estimator.

DISCUSSION

The weighted CWD surveillance system
and simulation analyses described here

provide statistical justification for the
intuitive weighting of individuals from
various demographic strata, based on the
estimated apparent prevalence and sam-
pling probabilities of those strata as they
enter the surveillance stream and are
tested. In our system, demographic strata
of deer that have a higher prevalence and
lower probability of being sampled, rela-
tive to the baseline stratum, receive more
weight than deer from strata with lower
prevalence and from which samples are
more common (Table 1). The probability
of detecting at least one case of CWD
among mule deer from strata where
infection is relatively rare is lower than
the probability of detecting an infected
individual from strata where infection is
more likely. Therefore, larger numbers of
deer must be sampled from ‘‘low-preva-
lence’’ strata in order to achieve the high
probability of detection typically ascribed

FIGURE 4. The distribution of ‘‘waiting time’’ (expressed as cumulative number of samples) until the first
positive deer was detected in a simulated chronic wasting disease (CWD)-infected mule deer population
sampled under the proposed weighted surveillance system. The three line styles represent different levels of
emphasis placed on sampling from ‘‘high-prevalence’’ strata (CWD suspect males, CWD suspect females, and
‘‘other’’): No increase in sampling probabilities of high-prevalence strata (solid lines), sampling probabilities of
these strata increased by 1% (dashed lines), or sampling probabilities of these strata increased by 5% (dot-
dashed lines); Table 2 lists the stratum-specific sampling probabilities used in simulations under these three
scenarios. In all simulations, unbiased weights (Table 1) were used, prevalence in the baseline stratum (adult
males) was 0.01, samples entered the surveillance stream from multiple sources, and the nominal target
detection probability was 0.95.
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to such surveillance efforts (Fig. 5). Our
weighted approach provides a framework
for combining data from various sample
sources in order to more transparently
evaluate and compare the overall efficacy
of surveillance activities.

Our simulations demonstrated the utility
of maximizing the collection and submission
of mule deer from demographic strata with
a higher weight to increase the probability
of detecting disease and to minimize the
overall economic commitment toward
CWD surveillance efforts: On average,
surveys based on collecting and examining
clinical CWD suspects would only be
expected to encounter a case by examining
about one tenth the number of submissions
needed if only harvested animals were

collected and examined. By design, the
weighted surveillance system promotes
sampling from higher-prevalence (and thus
higher-risk) strata because more points are
assigned to such strata, thereby motivating
users to reach the target value with fewer
samples and, thus, reduce overall surveil-
lance effort. The shift in the distribution of
cumulative cases examined before detecting
the first CWD case (Fig. 4) further empha-
sizes the benefits of sampling more heavily
from higher-prevalence strata. The cost
savings associated with this system could
be substantial because the number of
samples required for testing decreases
significantly as sampling is focused less on
harvested (and typically healthy) animals
and more on collection of ‘‘suspect’’ or

TABLE 3. Stratum-specific mean absolute error, mean percent error, probability of estimating positively
biased weights, and true weights based on 2006 demographic data from mule deer (Odocoileus hemionus) in
Data Analysis Unit (DAU) D-19 used in the simulations evaluating the effects of sample size on estimating the
weights for a weighted surveillance system.

Stratum identification
Number of

samples
True

weight
Mean absolute

error
Mean percent

error
Probability of
positive bias

Suspect—female 1,000 11.57 5.60 0.48 0.51
Suspect—male 10.27 5.32 0.52 0.48
Other 1.90 0.79 0.42 0.48
Harvest—adult female 0.58 0.28 0.48 0.47
Harvest—yearling female 0.45 0.80 1.78 0.21
Harvest—yearling male 0.25 0.38 1.52 0.28
Harvest—fawn 0.03 0.06 1.94 0.13
Suspect—female 5,000 11.57 2.29 0.20 0.50
Suspect—male 10.27 2.10 0.20 0.52
Other 1.90 0.31 0.17 0.50
Harvest—adult female 0.58 0.11 0.19 0.48
Harvest—yearling female 0.45 0.33 0.73 0.43
Harvest—yearling male 0.25 0.17 0.68 0.46
Harvest—fawn 0.03 0.03 1.09 0.49
Suspect—female 11,000 11.57 1.51 0.13 0.49
Suspect—male 10.27 1.43 0.14 0.50
Other 1.90 0.22 0.12 0.48
Harvest—adult female 0.58 0.07 0.13 0.48
Harvest—yearling female 0.45 0.23 0.52 0.45
Harvest—yearling male 0.25 0.11 0.43 0.46
Harvest—fawn 0.03 0.02 0.65 0.40
Suspect—female 15,000 11.57 1.26 0.11 0.53
Suspect—male 10.27 1.19 0.12 0.50
Other 1.90 0.19 0.10 0.52
Harvest—adult female 0.58 0.06 0.11 0.50
Harvest—yearling female 0.45 0.20 0.44 0.44
Harvest—yearling male 0.25 0.09 0.36 0.47
Harvest—fawn 0.03 0.02 0.55 0.50
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‘‘other’’ deer that inherently tend to be
unhealthy. The mean cost savings shown in
our simulation results are for one DAU in
Colorado; however, there are 33 of 55
DAUs across the state where CWD has not
been detected (Colorado Division of Wild-
life, 2009) and where this weighted survey
system could be applied; fiscal savings could
be even more dramatic in other jurisdic-
tions with greater numbers of cervid
populations of unknown status that require
sampling. However, it is important to
consider that these cost savings estimates
are based on the surveillance system
established in Colorado and do not incor-
porate differences across strata for sample
collection. This is reasonable, in our system,
because field personnel are responsible for
collecting samples from these strata as part
of their normal duties (i.e., culling suspect
deer, collecting vehicle-kills, etc.) and,
therefore, there is little added cost for
collecting samples from these sources as

compared to hunter-submitted samples.
Other jurisdictions with limited field per-
sonnel, or other restrictions, may have
marked differences in sample collection
costs and, therefore, cost savings as report-
ed here may vary. On balance, however, it
seems likely that using a weighted surveil-
lance approach would provide some cost
savings and would also provide a method for
managers to exploit all available information
on CWD epidemiology when conducting
surveillance.

Our simulations emphasized several
important considerations related to CWD
(and other wildlife disease) surveillance.
First, there is a clear relationship in CWD
surveillance between the probability of
detecting at least one positive case and the
cost associated with surveillance: Regard-
less of sampling scheme, increasing CWD
detection probability comes at an in-
creased cost and vice versa; however,
exploiting differences in sampling and
prevalence rates should lessen the relative
costs associated with increasing the likeli-
hood of detecting new foci. If biased
weights are inadvertently used in the
weighted surveillance system, then costs
will increase or decrease depending on the
direction of the bias, as will the disease
detection probability. Fortunately, it ap-
pears that the weighted surveillance sys-
tem is relatively robust to modest bias in
the weights: In our simulations, the
probability of detecting at least one case
was not less than 0.9 until bias in the
weights was 40% or greater.

As with any surveillance system, we
recognize that violating sampling design
assumptions will likely diminish the ability
to detect CWD at the specified 12a. This
consequence was evident in simulations
where bias was introduced into the
weights. The assumption that CWD cases
were distributed as a Poisson random
variable within each stratum seemed
reasonable, given the low probability of
an individual being infected, but we did
not examine the effects of violating this
assumption. The assumption that individ-

FIGURE 5. The potential contributions of sam-
ples from different demographic strata in detecting
chronic wasting disease (CWD) are reflected in the
relationships between sample size and the probability
of detecting at least one CWD case across the eight
(apparent health3sex3age) strata developed for
mule deer sampled in Colorado, United States. The
eight strata are arrayed from upper left to lower right
in order of descending estimated weights (Table 1),
calculated as described in the text. The solid black
line is for harvested adult ($2 yr old) male mule
deer, the baseline stratum to which other strata
weights were referenced; assumed prevalence among
harvested adult male mule deer was 0.01.
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uals were randomly selected within a
stratum for sampling is undoubtedly
violated in practice (Otis et al., 1978),
but this problem of individual heteroge-
neity plagues all practiced CWD surveil-
lance approaches of which we are aware.
The assumption that relative prevalence
within each stratum is constant across
different population prevalence levels may
also likely be violated due to factors such
as transmission probabilities, spatial het-
erogeneity, density-dependent mecha-
nisms and, perhaps, other factors (Miller
et al., 2000; Miller and Conner, 2005),
although the difference in prevalence
between sexes appears remarkably robust
across a wide range of prevalence (Miller
et al., 2008). Our system performed
reasonably well in simulations examining
the use of biased weights that equated to a
situation where prevalence for each stra-
tum differed from the true simulation
prevalence, suggesting it is robust to
minor violations of this assumption. De-
spite these potential limitations, we be-
lieve that the assumptions associated with
our, or similar, weighted surveillance
approaches are more defensible than the
assumption that every individual sample
entering the surveillance stream comes
from a uniform population and is of equal
detection value, an assumption that is
central to harvest-based CWD surveil-
lance approaches (Samuel et al., 2003),
yet clearly violated (Fig. 5).

One suggested advantage of the har-
vest-based CWD surveillance approach is
that sampling apparently healthy harvest-
ed animals is ‘‘conservative’’ compared to
using weighted surveillance. In other
words, because in the weighted surveil-
lance system 300 individual samples may
not be tested (i.e., the target value may be
reached before the total number of
samples tested equals 300), systems cur-
rently in use will have a higher probability
of detecting CWD. Examined in the same
framework as our weighted surveillance
system, however, the contemporary CWD
surveillance approach in wide use repre-

sents a case of extreme bias in stratum-
specific weights most comparable to sim-
ulations incorporating mixed bias in the
weights—the bias in harvest-based surveys
tends to be negative for high-prevalence
strata (e.g., unthrifty individuals) and
positive for low-prevalence strata. It fol-
lows that such an approach may result
either in increased probability of disease
detection or in decreased probability of
disease detection—the direction of the
bias in this probability depends on sample
composition. For example, if most samples
actually come from high-prevalence stra-
tum, then a will be negatively biased and
the probability of detection will approach
1.0; alternatively, if the majority of the
samples in the surveillance stream come
from low-prevalence strata like yearling
males (which are abundant in many
heavily harvested North American deer
populations), then a will be positively
biased and the true probability of detect-
ing at least 1 positive case will fall below
that believed to be assured, based on the
original survey design (Fig. 5). Under
either scenario, the contemporary har-
vest-based approach will be inefficient
relative to the weighted surveillance sys-
tem, because either costs will be higher
than necessary or disease detection prob-
ability will be below the nominal ‘‘adver-
tised’’ level. Moreover, if the majority of
samples come from low-prevalence strata,
such as yearling males, then the weighted
surveillance system would actually require
sampling more individuals than prescribed
by the contemporary approach because
the weights for this stratum are less than
one. The notion that traditional approach-
es for CWD surveillance are somehow
superior to a weighted approach seems
largely based on the premise that a greater
number of samples will always be ‘‘better’’
when, in fact, our results illustrate that
both the number of samples and the
source of those samples can influence
the probability of disease detection
(Fig. 5). By design, weighted surveillance
encourages sampling from demographic
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strata with the highest probability of
infection in order to maximize speed of
disease detection and minimize cost—we
see no clear advantage to using approach-
es that ignore information available on
differences in prevalence and probability
of CWD infection across demographic
strata within a deer population.

Another concern among prospective
users is whether adequate data are avail-
able to create a jurisdiction-specific
weighted system, as well as how to
estimate the required weights. Based on
our sample size simulations, it appears that
estimating weights from at least 5,000
samples will yield errors #20% for strata
with weights .1, which our bias simula-
tions suggest should not markedly affect
disease detection. These sample size
simulations also demonstrate that, if
weights are biased, the biases tend to be
negative and thereby provide conservative
estimates of the number of samples
needed (i.e., 12a will be higher than the
level prescribed by the user). Moreover,
the strata most affected by small sample
size are those with low weights and, thus,
these biases will have minimal effects on
overall disease detection probability.

The information provided here should
be sufficient to allow other jurisdictions to
develop weighted surveillance systems as
the need arises. However, as a first step in
doing so, we recommend constructing a
demographic model and conducting sam-
ple size simulations, as described herein,
based on strata-specific sampling probabil-
ities and prevalence estimates from other
regions of interest. If sufficient data are
available, but jurisdictions also want to
incorporate the data from Colorado includ-
ed here, we suggest using a Bayesian
approach to estimate weights. Such an
approach should be relatively straightfor-
ward, given the likelihoods described in
Appendix A and using weights from
Table 1 as prior values; as more local data
are acquired over time to estimate the
weights, these prior values will be over-
whelmed by local data. We encourage

other jurisdictions with adequate data to
consider estimating weights independently,
using the maximum likelihood framework
provided herein for comparison to the
weights we have reported to help elucidate
potential regional or species-specific dif-
ferences that could be important in further
refining CWD surveillance approaches.

For jurisdictions lacking appropriate or
adequate data (e.g., a state, province, or
nation where CWD has not been detect-
ed), an alternative to the traditional
‘‘random sampling’’ approach is to simply
use the weights directly from Table 1.
This assumes that probabilities of samples
from the various strata entering the
surveillance stream from other jurisdic-
tions are similar to those we reported and
that the effects and epidemiologic patterns
of CWD are relatively constant between
regions and across species, which seem
reasonable, based on published observa-
tions (Miller et al., 2000; Miller and Wild,
2004; Miller and Conner, 2005; Williams,
2005; Joly et al., 2006; Grear et al., 2006)
and on similarities between the weight
values independently estimated for mule
deer (Table 1) and for elk (D. Walsh,
unpubl. data) using data from Colorado.
Given the relatively robust nature of these
estimated weights, as demonstrated by our
simulations, it seems unlikely that a CWD
surveillance approach based on our esti-
mated weights for mule deer in northern
Colorado would be any less reliable than
alternatives that incorrectly assume that
the probability of CWD infection across
all demographic strata is equal.

The need for a weighted surveillance
system that incorporates all available
information regarding stratum-specific
prevalence and sampling probabilities has
become apparent in Colorado because
public interest and economic support for
CWD surveillance has begun to wane. As
interest and funding have declined, it has
become necessary to streamline our sur-
veillance to refocus on sampling individu-
als with the greatest probability of being
infected in order to continue detecting
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changes in the geographic distribution of
CWD in a timely manner. Additionally,
the inability to collect the ‘‘standard 300
samples’’ from high-risk management
units due to lack of harvest, hunter
participation, or other constraints (Colo-
rado Division of Wildlife, 2009) has
compelled a shift in emphasis from harvest
submissions to those that can be collected
by agency personnel. Using this weighted
surveillance system can reduce the total
number of samples that agency personnel
will need to acquire from a population in
order to achieve a nominal ‘‘disease-free’’
determination at the same probability of
disease detection as afforded under har-
vest-based surveillance approaches, by
exploiting variability in stratum-specific
prevalence and sampling probabilities
and by allowing all surveillance submis-
sions to count toward reaching local
surveillance goals. Moreover, the clearly
defined scoring system and target should
make this an intuitive system for agency
personnel to use and track. Although not
described further here, our weighted
surveillance system can also potentially
use data from multiple cervid species in
situations where agencies are attempting
to detect CWD in a region rather than in a
particular species. Under such an ap-
proach, samples from other susceptible
host species (elk, white-tailed deer, and
moose) could be included in the weighting
scheme and thereby contribute to the
overall confidence and probability of
detecting CWD in a particular geographic
area (D. Walsh, unpubl. data).

In the face of shrinking budgets and
dwindling public participation, we believe
that our weighted surveillance system will
be a useful tool for CDOW and, perhaps,
for other wildlife management agencies
charged with monitoring cervid populations
to detect new CWD foci. Weighted surveil-
lance is intended to encourage local wildlife
managers to remain actively involved in
CWD surveillance by encouraging sample
submissions from demographic sources
where CWD is more prevalent; the greatest

strengths of this approach are the intuitive
assignment of different values to samples
from different sources and the ability to
combine contributions from multiple sam-
ple sources toward reaching a quota of
survey points. As interest shifts from CWD
to other wildlife diseases in Colorado and
elsewhere, surveillance systems will need to
continue to evolve and become more
efficient in order to be sustainable. We
believe the weighted surveillance system
described here represents a step forward in
this surveillance process.
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APPENDIX A: DERIVATION OF WEIGHTED
SURVEILLANCE SYSTEM

The first step in developing the weighted
surveillance system is to determine the meth-
od for calculating the number of samples
needed across the various strata to achieve
some user-specified disease detection proba-
bility (12a) at a given prevalence (pdesign). To

facilitate this, we will rely on the assumptions
previously stated (see Materials and Methods).
Based on these assumptions, the joint proba-
bility density function can be formulated as
follows:

P(X0, . . . , Xm j li)~P
m

i~0

exp ({li)
lXi

i

Xi!
, ð1Þ
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where Xi5the total number of positives from
the ith stratum in the surveillance stream, and
the expected number of CWD-positive cases in
the ith stratum is li5Ni3di3pi3f5ni3pi3f,
where Ni5population size of the ith stratum,
di5sampling probability of the ith stratum (i.e.,
probability an individual enters the surveillance
stream), ni 5 the realized number of samples in
the surveillance stream from ith stratum, pi is
the prevalence for the ith stratum, p0 is the
prevalence for the baseline stratum (i.e., the
stratum with weight (w0) equal to 1), and
f5the sensitivity of the test. Based on equation
(1), the probability of failing to detect a positive
case during surveillance (a) is:

prob(
Xm

i~0

Xi~0)~exp {
Xm

i~0

nipif

 !
~a,

Xm

i~0

nipi~
{ ln að Þ

f
: ð2Þ

The probability of detecting $1 CWD-positive
case can be calculated as 12a. Using our
assumption that relative prevalence within each
stratum is constant across different population
prevalence levels, we let pi5wipdesign, where wi

5 weight for the ith stratum and pdesign5the
specified design prevalence for p0 (i.e., this is
the prevalence at which the practitioner wishes
to detect at least 1 CWD-positive case with
probability 12a in the baseline stratum; com-
monly 0.95 is used). Assuming f51, equation (2)
can be rewritten as follows:

Xm

i~0

niwipdesign~{ln að Þ: ð3Þ

Thus, the number of samples needed from each
stratum, or from a combination of strata, to
achieve a disease detection probability of 12a is:

Xm

i~0

niwi~
{ln að Þ
pdesign

~t, ð4Þ

where t is the target value, as described earlier. It
is clear from this equation that current surveil-
lance systems (i.e., wi;1 for all i) are special
cases of the weighted surveillance system. This
equation provides the basis for determining how
many samples from each stratum or combination
of strata are required to reach a desired disease
detection probability of (12a).

The next step is to estimate weights (wi) for
the various strata in equation (4). Once again,
using the assumption that relative prevalence
within each stratum is constant across different
population prevalence levels, we let pi5wip0,
with p0 representing the prevalence in the user-

specified base-line stratum. Thus, prevalence
for each stratum is scaled relative to the base-
line stratum. Earlier we had set p05pdesign, but
to estimate the weights we will use an estimate
of p0 derived from our surveillance data. Then,
given the data vector x, the likelihood function
for wi is as follows:

L(wi j x0, . . . , xm, n0, . . . , nm, p0)

~P
m

i~0

exp ð{liÞ
lxi

i

xi!

~P
m

i~0

exp ð{wip0niÞ
wip0nið Þxi

xi!
: ð5Þ

Based on our assumption, if the number of
positive cases at the time of the survey in each of
ith strata is independently distributed as Poisson
(li) random variables and the realization of
li5ni3pi5ni3wi3po, then the joint likelihood
function can be expressed as:

L(wi, p0 j x0, . . . , xm, n0, . . . , nm)

~exp ð{p0n0Þ
p0n0ð Þx0

x0!

|P
m

i~1

exp ({wip0ni)
wip0nið Þxi

xi!
, ð6Þ

from which we generate maximum likelihood
estimates for wi as:

ŵwi~
xi

nip̂p0

~
p̂pi

p̂p0

, ð7Þ

and we also generate p̂05x0/n0, the maximum
likelihood estimate of prevalence for the
baseline stratum. It is clear from equation (7)
that the weight for the baseline stratum is ;1.

The weighted surveillance system is then
employed by collecting samples from the
various strata until:

Xm

i~0

niŵwi~t, ð8Þ

where t has been calculated before the onset
of surveillance from equation (4) using a user-
specified a and pdesign.

Using the delta method, the estimate of the
variance for the individual weights can be
calculated as follows:

vâar(ŵwi)~
p̂pi 1{p̂pið Þ
ni p̂p0ð Þ

2
z

p̂pið Þ
2
p̂p0 1{p̂p0ð Þ

n0 p̂p0ð Þ
4

: ð9Þ

APPENDIX B: BIAS EQUATIONS

If weights are biased, the target value is
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reached too early, or too late, depending on
the direction of the bias. The difference in the
total number of samples needed to reach the
target value, compared to the actual number
needed for each stratum, can be derived. Let
qi5difference in number of samples from the
true number of samples (ni) needed in the ith
stratum to reach the target (t), when there
exists a bias (bi) in the estimated weights
relative to the true weights (wi). Then, for
stratum i, the following is true:

nizqið Þ| wizbið Þ~niwi~t, ð10Þ

Using simple algebra, the difference in the num-
ber of samples collected based on biased weights
from the true number of samples needed is:

bias nið Þ~qi~
{nibi

wizbið Þ : ð11Þ

In addition to affecting the number of samples
needed to reach the target value, biased weights

will also increase or decrease the disease
detection probability (12a) beyond the intended
level, depending on the direction of the bias of
the weights. For simplicity, we present the
formula for calculating this change in a due to
biased weights for 1 stratum here; the extension
to all strata follows logically. Using equation (1)
and based on the true weights,

bias að Þ~ab{atrue~exp ð{ nizqið Þ|wipdesignÞ

{ exp ð{niwipdesignÞ, ð12Þ

where 12ab5the actual disease-detection prob-
ability based on using biased weights, and
12atrue5the actual disease-detection probability
based on using the true weights. Then it can be
shown that:

bias að Þ~a exp {wi

nibi

wizbið Þ|pdesign

� �
{1

� �
:

ð13Þ
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