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The cold, high-gradient mountain streams of Colorado pro-
vide ideal habitat for salmonid populations, including brook 

trout (Salvelinus fontinalis, Mitchill), brown trout (Salmo trutta, 
Linnaeus), cutthroat trout (Oncorhynchus clarkii, Richardson), 
mountain whitefish (Prosopium williamsoni, Girard) and rainbow 

trout (Oncorhynchus mykiss, Walbaum). Salmonid habitat often 

co-occurs with both high aqueous metal concentrations (copper: 
0.15–935 μg/L, cadmium: 0.01–7.92 μg/L, zinc: 0.25–1,940 μg/L; 
Schmidt et al., 2010) associated with the metal rich geology of the 

Colorado Mineral Belt (Church et al., 2012; Tweto & Sims, 1963) 
and the parasite that causes salmonid whirling disease (Myxobolus 
cerebralis, Hofer). M. cerebralis was first detected in North America 
in 1956, spread through the transfer of live fish (Hoffman, 1970, 
1990), and subsequently found in 22 states (Bartholomew & Reno, 
2002) and Canada. The disease caused widespread population-
level declines, especially in rainbow trout populations throughout 
the Intermountain West (Nehring & Thompson, 2001; Nehring 

& Walker, 1996; Schisler, Bergersen, & Walker, 1999; Schisler, 
Walker, Chittum, & Bergersen, 1999; Vincent, 1996). Aqueous 
copper concentrations in Colorado's surface waters are often ar-
tificially elevated because historical mining activity has the po-
tential to accelerate the weathering of metal rich ore (Younger, 
Banwart, & Hedin, 2002) exposed during the twentieth and 

twenty-first centuries. 
Although copper is an essential element (Grosell, 2011), chronic 

copper toxicity concentrations for brook trout, brown trout and rain-
bow trout range between 16.25 and 31.15 μg/L (U.S. Environmental 
Protection Agency, 2007). Dissolved copper affects several fish 

physiological processes resulting in reductions in growth (10– 

140 μg/L; Buckley, Roch, McCarter, Rendell, & Matheson, 1982; 
Heydarnejad, Khosravian-hemami, Nematollahi, & Rahnama, 2013; 
McKim & Benoit, 1971), reduced viable egg production and hatch-
ability (32.5 μg/L; McKim & Benoit, 1971), reduced olfactory re-
sponses (0.18 μg/L; Hecht et al., 2007), and reductions in swimming 

ability (5 μg/L; Beaumont, Butler, & Taylor, 1995). Damage to the 

gills and opercula of rainbow trout can also occur following exposure 

to copper (500 μg/L; Kirk & Lewis, 1993; Wilson & Taylor, 1993), 
which can be stressors and/or pathways for infection and diseases. 
Copper can also affect biochemical parameters (as low as 10 μg/L; 
Heydarnejad et al., 2013) and gene expression (as low as 3.2 μg/L; 
Santos et al., 2009), and inhibit the fish immune system (3.82– 

290 μg/L; Anderson, Dixon, Bodammer, & Lizzio, 1989; Dethloff & 

Bailey, 1998; Dethloff, Bailey, & Maier, 2001; Elsasser, Roberson, & 

Hetrick, 1986; Mushiake, Nakai, & Muroga, 1985; O'Neill, 1981). As 
such, copper exposure can increase susceptibility to bacterial patho-
gens such as Vibrio anguillarum, Pacini (3.2–8 μg/L; Baker, Knittel, 
& Fryer, 1983) and Yersinia ruckeri, Ewing (7.0 μg/L; Knittel, 1981), 
infectious hematopoietic necrosis virus (3.9 μg/L; Hetrick, Knittel, & 

Fryer, 1979), and fungal infections from Saprolegnia parasitica, Coker 
(250 μg/L; Carballo, Muñoz, Cueller, & Tarazona, 1995). 

Following establishment in the 1990s, M. cerebralis was found in 

11 of 15 of Colorado's major river drainages. The progression of dis-
ease in young fish results in skeletal deformities that can affect be-
haviour (El-Matbouli, Fisher-Scherl, & Hoffman, 1992) and mortality 

before reproductive age. Little is known about the interactions be-
tween copper and whirling disease in fish populations, likely because 
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of the complicated life cycle of the parasite which includes two hosts 
and two free-living life stages (Markiw & Wolf, 1983; Wolf & Markiw, 
1984). Toxic effects on the immune system at copper levels sublethal 
to the two hosts, salmonid fishes and Tubifex tubifex (Müller) worms, 
have the potential to increase spread and virulence of the disease. 
T. tubifex worms have a lower sensitivity to copper than other ben-
thic invertebrates (Roman, De Schamphelaere, Nguyen, & Janssen, 
2007). Although the effect of copper on T. tubifex susceptibility 

to whirling disease has not been directly studied, Shirakashi and 

El-Matbouli (2010) showed that cadmium exposure did not affect 
worm survival or reproduction, but exposed worms exhibited higher 
infection prevalence and produced a higher number of triactinomyx-
ons, the waterborne infectious actinospore, than unexposed worms. 

Toxic effects of copper on the free-living life stages of M. ce-
rebralis are under studied. The myxospore and triactinomyxon are 

potentially susceptible to copper toxicity, thus reducing risk of the 

disease in aquatic ecosystems with trace copper. However, copper 
sulphate exposure to the myxospores resulted in a survival of 38%– 

96% of the spores, similar to myxospores maintained in a control 
source (Hoffman & Hoffman, 1972). The objective of this study was 
to determine whether aqueous copper exposure would decrease tri-
actinomyxon viability, thus breaking the life cycle of M. cerebralis in 
aquatic systems where copper is present. 

Triactinomyxons were obtained from lineage III T. tubifex 
cultures maintained in 76-L static tanks at the Colorado Parks 
and Wildlife (CPW) Parvin Lake Research Station (Red Feather 
Lakes, Colorado, USA). In addition to feeding the worms follow-
ing the methods of Nehring et al., (2014) and Nehring, Schisler, 

Chiaramonte, Horton, and Poole (2015), worms were fed M. ce-
rebralis-infected fish from previous laboratory exposure ex-
periments. Myxospores from infected fish are ingested by the 

worms and undergo transformation within the intestinal epithe-
lial cells, eventually becoming the infectious triactinomyxon (El-
Matbouli & Hoffman, 1998; El-Matbouli, Holstein, & Hoffman, 
1998; El-Matbouli, McDowell, Antonio, Andree, & Hedrick, 1999). 
Triactinomyxons are then released into the water column by the 

worms where they can remain viable from 6–15 days post-release 

in water temperatures between 7–15°C (El-Matbouli et al., 1999; 
Markiw, 1992) and attach to and infect the salmonid host (Hedrick 

& El-Matbouli, 2002; Markiw, 1986). To obtain triactinomyxons 
from the Tubifex tanks, the entire volume of the 76-L tank was fil-
tered through a 20-μM screen. The contents of the screen were 

gently rinsed into a 1,000-ml jar containing clean, filtered lake 

water and transported to the CPW Aquatic Toxicology Laboratory 

for enumeration and experimentation. 
Viable triactinomyxons, identified by the presence of a compact 

and intact sporoplasm, and non-viable triactinomyxons, identified 

by the absence of a sporoplasm (Figure 1), were counted following 

the methods of Fetherman, Winkelman, Schisler, and Antolin (2012) 
and Fetherman, Winkelman, Schisler, and Myrick (2011). Ten counts 
were conducted on the filtrate obtained from the Tubifex tanks to 

account for a possible uneven distribution of triactinomyxons, and 

an average of the 10 counts was used to obtain the number of viable 

and non-viable triactinomyxons per ml. Triactinomyxon viability was 
calculated as a percentage of viable triactinomyxons over the total 
number of triactinomyxons present. 

F I G U R E  1   (a) Non-viable 
triactinomyxon with absence of a 
sporoplasm and extruded polar filaments, 
and (b) viable triactinomyxon with a 
compact and intact sporoplasm, and non-
extruded polar filaments 

(a) (b) 

TA B L E  1  Target (nominal), dissolved and total copper (Cu) concentrations (μg/L; [SE]), and total hardness concentrations (mg/L; [SE]) for 
the six treatments before and after the 24-hr triactinomyxon exposure period 

Treatment Target Cu 

Dissolved Cu Total Cu Total hardnessa 

Before After Before After Before After 

Control 0 1.25 [0.08] 2.38 [0.20] 1.77 [0.35] 6.44 [1.61] 48.63 [0.86] 58.67 [3.96] 

Low 7.5 9.13 [0.15] 16.3 [0.46] 10.27 [0.15] 19.17 [0.18] 50.59 [0.77] 50.40 [0.14] 

Medium 15 16.3 [0.46] 28.73 [0.42] 19.03 [0.17] 35.43 [0.19] 51.19 [0.35] 56.89 [3.64] 

High 30 30.37 [1.34] 51.37 [1.49] 36.03 [0.32] 68.07 [3.44] 50.45 [0.34] 62.93 [0.19] 

HH 60 63.47 [2.84] 99.67 [5.81] 72.00 [0.51] 145.33 [14.84] 50.65 [0.83] 63.97 [0.86] 

HHH 120 96.93 [5.75] 178.67 [7.83] 134.67 [2.33] 277.33 [28.67] 48.13 [1.06] 64.21 [0.83] 

aHardness was estimated using the following equation: Total hardness = ([Mg mg/L] × 4.116) + ([Ca mg/L] × 2.497) + ([Al mg/L] × 5.564) + ([Fe 

mg/L] × 1.729) + (Mn mg/L] × 1.822) + ([Sr mg/L] × 1.142) + ([Zn mg/L] × 1.531). 
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Triactinomyxons were exposed to five levels of aqueous cop-
per plus a control (Table 1), with three replicates per concentration. 
Nominal copper concentrations ranged from 0 (control) to 120 μg/L, 
spanning copper concentrations commonly found in Colorado rivers 
(Schmidt et al., 2010). Within the 18 experimental units, stock solu-
tions of copper sulphate (CuSO4) were diluted with dechlorinated 

municipal tap water (Fort Collins, Colorado, USA) to the appropriate 

concentrations for each treatment level. This water source provided 

water chemistry similar to oligotrophic mountain streams common in 

the Mineral Belt of Colorado. Low alkalinity (30–40 mg/L), soft hard-
ness (40–53 mg/L CaCO3), low dissolved organic carbon (1–3 mg/L), 
low sulphate (8–13 mg/L) and neutral pH are historically observed 

(2012–2015; CPW unpublished data). 40 ml of filtrate, gently stirred 

to keep triactinomyxons in suspension, was distributed to experi-
mental beakers, randomized in blocks, with 20 ml delivered to each 

beaker on each of two passes to account for possible uneven triacti-
nomyxon distribution within the filtrate. Based on the assessment of 
770 viable triactinomyxons per ml in the filtrate, each experimental 
unit contained 30,830 viable triactinomyxons, or 154 viable triacti-
nomyxons per ml. Beakers were gently mixed and stored in an incu-
bator at 12°C for 24 hr. 

At the beginning and end of the 24-hr period, copper concen-
trations were assessed for each beaker using inductively coupled 

plasma-optical emission spectrometry (ICP-OES). After a 24-hr ex-
posure, the percentage of viable triactinomyxons was assessed using 

methods described above. Three quantitative assessments were 

conducted from each replicate beaker. Dissolved and total copper 
concentrations, hardness and percentage of viable triactinomyxons 
were compared before and after the 24-hr period using a repeated 

measures analysis of variance (RM ANOVA) implemented in SAS 

Proc Mixed (SAS Institute, 2018). 
Dissolved and total copper concentrations were close to the 

target concentrations for all treatments at the beginning of the ex-
periment. Copper concentrations increased over the 24-hr period as 
a result of evaporation (Table 1). Triactinomyxon viability dropped 

significantly within the 24-hr period from the percentages observed 

in the filtrate at the beginning of the experiment (Figure 2). However, 

F I G U R E  2  Percent viable Myxobolus cerebralis triactinomyxons 
in the six treatments before (line ± 2 SE; counts obtained from 
filtrate prior to copper exposure) and after (bars ± 2 SE) the 24-hr 
triactinomyxon copper exposure period 

despite the range of target copper concentrations within treatments, 
and the increase in copper concentrations during the 24-hr period, 
triactinomyxon viability did not differ among treatments at the end 

of the period (p = 0.86; Figure 2). The overall decrease in triactino-
myxon viability is similar to that observed by Kallert and El-Matbouli 
(2008) at two days of age and stored at 12°C. 

These results, and those of Hoffman and Hoffman (1972), sug-
gest that both free-living life stages of M. cerebralis are likely unaf-
fected at most environmentally relevant concentrations, those found 

in Colorado streams (Schmidt et al., 2010) and spanning the range of 
chronic toxicity to brook trout, brown trout and rainbow trout (U.S. 
Environmental Protection Agency, 2007). Thus, copper likely provides 
no protective effect against whirling disease. Additionally, triactino-
myxon production could increase in the presence of metals (Shirakashi 
& El-Matbouli, 2010). Because sublethal concentrations of copper can 

reduce immune function and increase susceptibility to diseases in sal-
monids (Anderson et al., 1989; Dethloff & Bailey, 1998; Elsasser et 
al., 1986; Mushiake et al., 1985; O'Neill, 1981), the effect and spread 

of whirling disease are potentially greater in fish populations stressed 

by copper, and further research investigating this scenario is needed. 
At lethal levels of copper, the absence of either host ensures that the 

parasite could be extirpated from an ecosystem within 14 months 
(Nehring, Alves, Nehring, & Felt, 2018). Such disease-free locations 
may be priority candidates for mine reclamation efforts. Results also 

suggest that exposure rates of salmonids to triactinomyxons will not 
be reduced if copper is present, which enables future laboratory stud-
ies examining the disease-toxicant interactions in fish stressed by both 

whirling disease and aqueous copper. 
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