SALMONID DISEASE INVESTIGATIONS

Federal Aid Project F-394-R6
George J. Schisler
Principal Investigator
and
Phil J. Schler
Eric R. Fetherman

Bruce McCloskey, Director
Job Progress Report
Colorado Division of Wildlife

Fish Research Section
Fort Collins, Colorado

STATE OF COLORADO

Bill Ritter, Jr., Governor

COLORADO DEPARTMENT OF NATURAL RESOURCES

Harris D. Sherman, Executive Director
COLORADO DIVISION OF WILDLIFE

Bruce McCloskey, Director

WILDLIFE COMMISSION

Tom Burke, Chair
Robert Bray, Secretary
Brad Coors
Tim Glenn
Richard Ray
Harris Sherman

Claire O’Neal, Vice Chair
Dennis Buechler Jeffrey Crawford
Roy McAnally
Ex Officio Members
John Stulp, Dept. of Ag.

AQUATIC RESEARCH STAFF

Mark S. Jones, General Professional VI, Aquatic Research Leader Arturo Avalos, Hatchery Technician III, Research Hatchery Stephen Brinkman, General Professional IV, F-243, Water Pollution Studies Harry Crockett, General Professional IV, Eastern Plains Native Fishes
Patrick Martinez, General Professional V, F-242, Coldwater Reservoir Ecology
\& GOCO-Westslope Warmwater
R. Barry Nehring, General Professional V, F-237, Stream Fisheries Investigations

Kevin B. Rogers, General Professional IV, GOCO-Colorado Cutthroat Studies Phil J. Schler, Hatchery Technician V, Research Hatchery
George J. Schisler, General Professional IV, F-394, Salmonid Disease Studies Kevin Thompson, General Professional IV, F-427, Whirling Disease Habitat Interactions, GOCO-Boreal Toad Studies
Harry Vermillion, Scientific Programmer/Analyst, F-239, Aquatic Data Analysis Nicole Vieira, Physical Scientist III, Water Quality Studies
Rosemary Black, Program Assistant I
Paula Nichols, Federal Aid Coordinator

Prepared by:

George J. Schisler, GP IV, Aquatic Researcher

Approved by:
Mark S. Jones, Aquatic Wildlife Research Leader

Date: \qquad

The results of the research investigations contained in this report represent work of the authors and may or may not have been implemented as Division of Wildlife policy by the Director or the Wildlife Commission

Table of Contents

Signature Page ii
List of Tables v
List of Figures vi
Job No. 1. Breeding and Maintenance of Whirling Disease Resistant Rainbow Trout Stocks.
Hatchery Production 1
Research Projects 3
Job No. 2. Whirling Disease Resistance Laboratory Experiments.
Experiment 1: Inheritance of Myxobolus cerebralis resistance among second generation crosses of the Hofer (GR) and Colorado River (CRR) rainbow trout strains.
Introduction 4
Methods 4
Results 8
Discussion 8
References 12Experiment 2: Physiological characteristics and inheritance of Myxobolus cerebralisresistance among multiple generational crosses of the Hofer (GR) and Colorado River(CRR) rainbow trout strains.
Introduction 13
Methods 13
Job No. 3. Whirling Disease Resistant Domestic Brood Stock Development and Evaluation.
Hatchery Performance Evaluations: Performance of a whirling disease resistant rainbow trout strain at two Myxobolus cerebralis-positive trout rearing facilities.
Abstract 27
Introduction 27
Methods 28
Results 31
Discussion 33
References 39
Field Performance Evaluations: Comparison of Hofer (GR) and Tasmanian strainrainbow trout as catchable plants in two put-and-take waters in Colorado.
Introduction 41
Methods 41
Results 43
Discussion. 48
References 49
Job No. 4. Whirling Disease Resistant Wild Strain Brood Stock Development and Evaluation.
Introduction 50
Methods 51
Results 53
Discussion 59
Job 5. Technical Assistance
Technical Assistance Milestones 60
Appendix I. Creel Survey Reports for Flatiron and Pinewood Reservoirs
Flatiron Reservoir (Water Code 54851) 63
Pinewood Reservoir (Water Code 55928) 77
Appendix II. Molecular Techniques for Identifying Hofer (GR) Strain Rainbow Trout
Colorado River Rainbow (CRR) vs. Hofer (GR) AFLPs Progress Report- Pisces Molecular 102

TABLES

$$
\begin{array}{ll}
\text { Table 1.1. Fish Research Hatchery on-site spawning information for Hofer } \\
\text { (GR) and Harrison Lake rainbow trout strains during the winter } \\
\text { 2006-2007 spawning season.. } 3
\end{array}
$$

Table 2.1. Family groups created for M. cerebralis resistance laboratory testing
(Fish Research Hatchery (FRH) brood) during spring 2006 spawning
season. 6
Table 2.2 Family groups created for M. cerebralis resistance laboratory testing (Colorado Cooperative Fish and Wildlife Unit wet lab (COOP) brood) during spring 2006 spawning season 7
Table 2.3. Family groups created for M. cerebralis resistance experiment conducted at the COOP wet lab in 2006-2007 16
Table 2.4. Control groups separated from family groups created for M. cerebralis resistance experiment conducted at the COOP wet lab in 2006-2007 20
Table 2.5. Batch weights and feed amounts for families on size 1 trout diet for M. cerebralis resistance experiment conducted at the COOP wet lab in 2006-2007 21
Table 2.6. Batch weights and feed amounts for families on size 2 trout diet for M. cerebralis resistance experiment conducted at the COOP wet lab in 2006-2007 25
Table 2.7. Batch weights and feed amounts for families on size 3 trout diet for M. cerebralis resistance experiment conducted at the COOP wet lab in 2006-2007 26
Table 3.1. Results of M. cerebralis infection evaluations at the Chalk Cliffs Rearing Unit. 37
Table 3.2. Results of M. cerebralis infection evaluations at the Poudre Rearing Unit. 38
Table 3.3. GR and Tasmanian strain rainbow trout stocked from April through June, 2006, at Flatiron and Pinewood reservoirs. 42
Table 4.1. Myxospore counts and classification of age 1+ and 2+ rainbow trout based on fin clips and AFLP analysis in the Gunnison River, 2006. 55
Table 4.2 Growth and myxospore counts for wild CRR and stocked B2 fish downstream of Stagecoach Reservoir and Service Creek.58

FIGURES

Figure 2.1. Average spore counts for the three Hofer (GR), three Colorado River
Rainbow (CRR), ten F1 [GR-CRR (50:50)] and 16 B2 [GR-CRR
(25:75)] strains 10
Figure 2.2. Example of inter-family variability in infection severity in F1 and B2 strains 11
Figure 3.1. Daily mean temperature, cumulative temperature units, and sample collections at the Chalk Cliffs Rearing Unit from January 2005 to January 2006 35
Figure 3.2. Daily mean temperature, cumulative temperature units, and sample collections at the Poudre Rearing Unit from July 2005 to July 2006 35
Figure 3.3. Growth rates for the Hofer (GR) and Tasmanian strain rainbow trout at the Chalk Cliffs Rearing Unit 36
Figure 3.4. Myxospore counts for Hofer (GR) and Bellaire rainbow trout at four months, eight months, and one year at the Poudre Rearing Unit. 36
Figure 3.5. Catch data from creel reports for number of rainbow trout caught by strain at Flatiron Reservoir. 44
Figure 3.6. Catch data from creel reports for number of rainbow trout caught by strain at Pinewood Reservoir 44
Figure 3.7. Proportion of fish returned to creel by strain for Flatiron and Pinewood reservoirs in 2006 45
Figure 3.8. Angler preference by strain, as defined by fin clip, for Flatiron and Pinewood reservoirs in 2006 46
Figure 3.9. Characteristics of fish contributing to angler preference at Flatiron and Pinewood reservoirs in 2006 47
Figure 3.10. Angler preference for trout flesh color, Flatiron and Pinewood reservoir questionnaire results, 2006 48
Figure 4.1. Rainbow trout population estimates for the Gunnison River, Ute park section, 2006 56

State: Colorado

Project No. F-394-R6

Project Title: Salmonid Disease Studies:
Whirling Disease-Resistant Rainbow Trout Studies

Period Covered: July 1, 2006-June 30, 2007
Project Objective: Development of rainbow trout brood stocks resistant to M. cerebralis for both hatchery and wild fish management applications.

Job No. 1. Breeding and Maintenance of Whirling Disease Resistant Rainbow Trout Stocks

Job Objective: Rear and maintain stocks of whirling disease resistant rainbow trout stocks.

Hatchery Production

The whirling disease resistant rainbow trout brood stocks reared at the Fish Research Hatchery, Bellvue, CO (FRH) are unique and each requires physical isolation to avoid unintentional mixing of stocks. Extreme caution is used throughout the rearing process and during on-site spawning operations to ensure complete separation of these different brood stocks. All lots of fish are uniquely fin-clipped and some unique stocks are individually marked with Passive Integrated Transponder (PIT) tags before leaving the main hatchery. This allows for definitive identification before the fish are subsequently used for spawning.

Starting in the middle of October 2006, FRH personnel checked all of the Hofer* (GR) and Harrison Lake brood fish (2, 3, 4 and 5 year-olds) weekly for ripeness.

Maturation is indicated by eggs or milt flowing freely with slight pressure applied to the abdomen of the fish. The first females usually maturate two to four weeks after the first group of males. As males are identified, they are moved into a separate section of the raceway to reduce handling and fighting injuries. On November 16, 2006, the fish from the first group of GR females were ripe and ready to spawn. Before each fish was spawned, it was examined for the proper identification (fin-clip or PIT tag). This procedure was repeated each time ripe females were spawned throughout the winter.

The wet spawning method was used, where eggs from the female are stripped into a bowl along with the ovarian fluid. After collecting the eggs, milt from several males is added to the bowl. Water is poured into the bowl to activate the milt. The bowl of eggs

[^0]and milt is then covered and not disturbed for several minutes while the fertilization process takes place. The eggs are then rinsed with fresh water to expel old sperm, feces, egg shells and dead eggs. The eggs are then poured into an insulated cooler to waterharden for approximately one hour.

The water-hardened fertilized (green eggs) from all the different crosses of the GR and Harrison Lake strains were moved to the FRH main hatchery building. Extreme caution was used to keep each individual cross totally separate from all others. Upon reaching the hatchery the green eggs are tempered and then disinfected (PVP Iodine, Western Chemical Inc., Ferndale, Washington, at 100 ppm for 10 minutes at a pH of 7). Eggs were then put into vertical incubators (Heath Tray, Mari Source, Tacoma, Washington) with 5 gpm of $12.2^{\circ} \mathrm{C}\left(54^{\circ} \mathrm{F}\right)$ of flow-through water. The total number of eggs was calculated using number of eggs per ounce (Von Bayer trough count minus 10%) times total ounces of eggs. Separate daily egg-takes and specific individual crosses were put into separate trays and recorded. To control fungus, eggs received a prophylactic flow-through treatment of formalin ($1,667 \mathrm{ppm}$ for 15 minutes) every other day until eye-up.

On the $14^{\text {th }}$ day in the incubator at $12.2^{\circ} \mathrm{C}\left(54^{\circ} \mathrm{F}\right)$, the eggs reach the eyed stage of development. The eyed eggs are removed from the trays and physically shocked to detect dead eggs, which turn white when disturbed. Dead eggs were removed (both by hand and with a Van Gaalen fish egg sorter, VMG Industries, Grand Junction, Colorado) on the $15^{\text {th }}$ day. The total number of good eyed eggs was calculated using the number of eggs per ounce times total ounces. On the $16^{\text {th }}$ day the eyed eggs were shipped via insulated coolers to other state agency hatcheries. The whole process was repeated throughout the spawning season with separate crosses of GR and Harrison Lake rainbow trout.

The GR and Harrison Lake rainbow trout production on-site spawn started on November 16, 2006 with ripe GR females. The last group of Harrison Lake females was spawned on February 1, 2007. With a goal in the fall to produce @ 200,000 eyed eggs, the egg take far exceeded the production needs with over 442,500 eyed eggs produced (Table 1.1). With the availability of both ripe males and females of several year classes and combinations of previous years crosses (F1 and B2) of GR and Harrison Lake strains, FRH personnel produced over 20 different lots during the spawn take. Surprisingly the overall egg quality remained quite good with $1^{\text {st }}$ egg pick-off of only 26%. FRH personnel were able to fill all GR egg requests for Colorado, California, and Utah for both production and research directed projects in 2006-2007.

Table 1.1. Fish Research Hatchery on-site spawning information for GR and Harrison Lake rainbow trout strains during the winter 2006-2007 spawning season.

STRAIN (CROSSES)	DATE SPAWNED	\# OF SPAWNED FEMALES	\# OF GREEN EGGS	\# OF EYED EGGS	SHIPPED TO
100% GR	$11 / 29 / 06-1 / 11 / 07$	101	299,250	212,400	CO and CA State Hatcheries/Research
75% GR 25% Harrison Lake	$11 / 16 / 06-1 / 30 / 07$	92	266,600	202,300	CO and UT State Hatcheries/Research
50% GR 50% Harrison Lake	$1 / 04 / 07-1 / 19 / 07$	15	21,350	16,350	CO Hatcheries
100% Harrison Lake	$1 / 04 / 07-2 / 01 / 07$	12	15,300	11,800	CO Hatcheries

Research Projects

Eggs produced specifically for research projects comprise a large proportion of the total production from the FRH. Specific details of those individual crosses and families created for the laboratory and field experiments are described in their respective sections of this report. The bulk of these family group descriptions appear in the following section, Job 2: Whirling Disease Resistance Laboratory Experiments.

Job Objective: Evaluate the inheritability and stability of whirling disease resistance in selected strains of rainbow trout.

Abstract

Experiment 1: Inheritance of Myxobolus cerebralis resistance among second generation crosses of the Hofer (GR) and Colorado River (CRR) rainbow trout strains.

INTRODUCTION

The Hofer (GR) rainbow trout strain has been identified as more resistant to whirling disease than other rainbow trout strains when exposed to Myxobolus cerebralis in laboratory conditions (Hedrick et al. 2003). However, the survival and viability of the strain in the wild is questionable and the consequences of stocking the strain directly into wild trout waters is unknown (Schisler et al. 2006). In 2004, a study was conducted in which GR strain rainbow trout and Colorado River rainbow (CRR) strain rainbow trout were crossed. The principle aim of that project was to incorporate whirling disease resistance from the GR into the CRR strain, a strain that is typically used to establish wild rainbow trout populations in Colorado (Schisler et al. 2006). Results of exposure experiments with the GR-CRR (50:50) cross (F1 generation) showed that spore counts per fish were reduced significantly from those found in the pure CRR strain. While average infection severity in the first generation cross was much lower than the pure CRR strain, it was not reduced to the spore count levels of the pure GR strain. However, some families, created from individual male-female pairs, were more resistant than others. In addition, many individual fish from those crosses appeared to inherit a similar level of resistance as observed in the pure GR strain. A second exposure experiment was initiated to evaluate the performance of the pure GR, pure CRR, F1 generation, and a second generation GR-CRR (25:75) backcross (defined as the B2 generation) in the presence of the whirling disease parasite. This experiment would provide insight to the continued inheritability of resistance to M. cerebralis, particularly in F1 generation fish backcrossed with the wild CRR strain.

METHODS

Spawning of all families occurred at the Colorado Division of Wildlife Fish Research Hatchery (FRH) and Colorado Cooperative Fish and Wildlife Unit (COOP) wet lab from mid-November 2005 through the end of December 2006 (Tables 2.1 and 2.2). Both male and female pure GR and F1 fish are held on site. F1 individuals had been tagged with Passive Integrated Transponder (PIT) tags to identify them by family group. Only the lowest spore count families of the F1 variety were retained for this second generation of crosses. These fish were identified by their 10 digit alpha numeric code prior to spawning. All tagged or untagged individuals were also numbered in the order that they were spawned. Pure CRR individuals were held at the Colorado Division of

Wildlife Glenwood Springs Hatchery (GWSH). Males were spawned at the GWSH and their sperm was transported in individual, numbered containers back to the FRH for fertilization of the GR and F1 eggs. In addition, live male and female CRR rainbow trout were transported back to the FRH and spawned with each other as well as GR and F1 males. An anal fin clip was taken from each spawned individual and stored in 70\% ETOH for later genetic analysis. Eggs were placed in incubators at the FRH or COOP wet lab and held until they were eyed. Once eyed, eggs were placed in 76 liter (20 gallon) tanks containing short (7 cm) standpipes for a greater amount of water turnover at the COOP wet lab, where they were hatched.

Individual families (single male/female matings) were used as replicates in this experiment. Three pure GR families, three pure CRR families, 10 F 1 families, and 16 B 2 families were used in this evaluation. In some cases, up to 2,000 fertilized eggs are produced with each paired cross. For the purposes of this exposure experiment, fish were culled down to approximately 50 per family until immediately before exposure. At that time the families were then reduced to 30 fish each.

Table 2.1. Family groups created for M. cerebralis resistance laboratory testing (FRH brood) during spring 2006 spawning season.

Group	Female	M ale	Fertilized	Female Origin	M ale Origin	Hatched	Dosed	Lab Experiment	Other Destinatio ns
1	135113115 a	134959197 a	1/22/2005	HoferxH arrison (54) (04 EXP)	Hofer (56) (04 EXP)	12/19/2005	2/17/2005	E9	Utah 12,992 eggs 12-13-05
2	133754663a	134839090a	1/22/2005	Hofer (13) (04 EXP)	HoferxH arrison (48) (04EXP)	12/19/2005	2/17/2005	E8	
3	133754663 a	134661691a	1/22/2005	Hofer (13) (04 EXP)	Hofer (15) (04 EXP)	12/19/2005	2/17/2005	E7	
4	133957366a	134609145a	11/22/2005	Hofer (14) (04 EXP)	HoferxHarrison (53) (04EXP)	12/19/2005	2/17/2005	E6	" "
5	133957366 a	133557283 a	1/22/2005	Hofer (14) (04 EXP)	HoferxHarrison (53) (04EXP)	12/19/2005	2/17/2005	E4	" "
6	New Clip \# 1	133665491a	1/22/2005	Hofer 4-yr old	HoferxHarrison (46) (04EXP)	12/19/2005	2/17/2005	E3	" "
7	New Clip \#2	133779472a	1/22/2005	Hofer 4-yr old	HoferxHarrison (46) (04EXP)	12/19/2005	2/17/2005	E24	" "
8	New Clip \#3	133827615a	1/22/2005	Hofer 4-yr old	HoferxHarrison (46) (04EXP)			-	" " and Research brood
9	New Clip \#4	133966134 a	1/22/2005	Hofer 4-yr old	HoferxHarrison (54) (04EXP)			-	" " and Research brood
10	New Clip \#5	133966134a	1/22/2005	Hofer 4-yr old	HoferxHarrison (54) (04EXP)			-	" " and Research brood
11	New Clip \# 5	adipose clip male	1/22/2005	Hofer 4-yr old	Hofer 4-yr old	12/19/2005	2/17/2005	E20	
12	134963680a	$134931211 a$	11/30/2005	Hofer (13) (04 EXP)	HoferxH arrison (48) (04 EXP)			-	Utah 2,508 eggs 12-13-05
13	134929766a	133817266a	1/30/2005	HoferxH arrison (54) (04 EXP)	Hofer (16) (04EXP)			-	and Research Brood
14	134522140a	CRR-24	12/1/2005	CRR×Hofer (35) (04 EXP)	Glenwood-CRR	1/3/2005	3/7/2006	E2	Gunnison River plant?
15	133735465a	CRR-22	12/1/2005	CRRxHofer (25) (04 EXP)	Glenwood-CRR	1/3/2005	3/7/2006	E10, P 1 (UCDA VIS)	
16	134512313 a	CRR-19	12/1/2005	CRR×Hofer (32) (04 EXP)	Glenwo od-CRR	1/3/2005	3/7/2006	E12, P 2 (UCDAVIS)	
17	134836296a	CRR-21	12/1/2005	CRRxHofer (36) (04 EXP)	Glenwood-CRR			-	
18	133661673 a	CRR-23	12/1/2005	CRRxHofer (25) (04 EXP)	Glenwo od-CRR	1/3/2005	3/7/2006	E17, P 3 (UCDA VIS)	
19	134835230a	CRR-20	12/1/2005	CRRxHofer (43) (04 EXP)	Glenwo od-CRR	1/3/2005	3/7/2006	E18, P 4 (UCDAVIS)	
20	133662650a	CRR-4	12/1/2005	CRRxHofer (31) (04EXP)	Glenwo od-CRR	1/3/2005	3/7/2006	E19, P 5 (UCDAVIS)	
21	134919273 a	CRR-8	12/1/2005	CRRxHofer (36) (04 EXP)	Glenwood-CRR			-	
22	134963295a	Nclip \# 3	12/20/2005	HoferxCRR (28) (04 EXP)	Glenwood-CRR			-	Yampa River 2,000 5-26-06
23	134616152a	Nolip \# 2	12/20/2005	HoferxCRR (27) (04 EXP)	Glenwood-CRR	1/18/2005	3/21/2005	E22	Sarvice Creek
24	133957222a	Nclip \# 4	12/20/2005	HoferxCRR (11) (04EXP)	Glenwood-CRR			-	and Yampa River 5,500 5-31-06
25	134961627a	N clip \# 5	12/20/2005	HoferxCRR (31) (04EXP)	Glenwood-CRR	1/18/2005	3/21/2005	E25, W1(UCDA VIS)	Fryingpan River 4,430 5-17-06
26	133773235a	N clip \# 6	12/20/2005	HoferxCRR (2) (04 EXP)	Glenwood-CRR	1/18/2005	3/21/2005	W2 (UC DA VIS)	
27	133961091a	N clip \# 7	12/20/2005	HoferxCRR (31) (04EXP)	Glenwood-CRR			-	
28	133877734a	Nclip \# 8	12/20/2005	HoferxCRR (26) (04 EXP)	Glenwood-CRR	1/18/2005	3/21/2005	W5	
29	133661243a	Nclip \# 9	12/20/2005	HoferxCRR (32) (04 EXP)	Glenwood-CRR	1/18/2005	3/21/2005	W6	"
30	133672213 a	Nclip \# 10	12/20/2005	HoferxCRR (26) (04 EXP)	Glenwo od-CRR	1/18/2005	3/21/2005	W7, W3 (UCDAVIS)	
31	133723393a	Nclip \# 11	12/20/2005	HoferxCRR (1) (04EXP)	Glenwood-CRR	1/18/2005	3/21/2005	W8, E1(UCDAVIS)	
32	134546717a	Nclip \# 12	12/20/2005	HoferxCRR (31) (04EXP)	Glenwood-CRR			-	" "
33	133764625a	Nclip \# 13	12/20/2005	HoferxCRR (2) (04 EXP)	Glenwood-CRR	1/18/2005	3/21/2005	W9, W4 and P6 (UCDA VIS)	" "
34	134519513 a	Nclip \# 14	12/20/2005	HoferxCRR (1) (04 EXP)	Glenwood-CRR	1/18/2005	3/21/2005	W 10	" "
35	134511753 a	Nclip \# 15	12/20/2005	HoferxCRR (30) (04 EXP)	Glenwood-CRR	1/18/2005	3/21/2005	W11	" "
36	Clip 36	Nclip \# 16	12/21/2005	Hofer 4-yr old	Glenwood-CRR	1/18/2005	3/21/2005	W12	Rio Grande, 8,109
37	Clip 37	Nclip \# 26	12/21/2005	Hofer 4-yr old	Glenwood-CRR	1/18/2005	3/21/2005	W13	and Beaver Creek, 5,326 4-20-06
38	Clip 38	Nclip \# 18	12/21/2005	Hofer 4-yr old	Glenwood-CRR	1/18/2005	3/21/2005	W14	
39	Clip 39	N clip \# 19	12/21/2005	Hofer 4-yr old	Glenwood-CRR	1/18/2005	3/21/2005	W 15	"
40	C lip 40	Nclip \# 20	12/21/2005	Hofer 4-yr old	Glenwood-CRR	1/18/2005	3/21/2005	W 16	
41	Clip 41	Nclip \# 21	12/21/2005	Hofer 4-yr old	Glenwood-CRR	1/18/2005	3/21/2005	W17	
42	Clip 42	Nclip \# 22	12/21/2005	Hofer 4-yrold	Glenwo od-CRR	1/18/2005	3/21/2005	W 18	" "

Table 2.2. Family groups created for M. cerebralis resistance laboratory testing (COOP wet lab brood) during spring 2006 spawning season.

Group	Female	Male	Fertilized	Descripton	Female Origin	Male Origin	Location of eggs	Hatched	Dosed
Tray 1 Round	134656324a	134418440a	11/14/2005		Hofer (56) (04 EXP)	Hofer (13) (04 EXP)	Quonset		
Tray 1	134569323a	133656755a	11/14/2005		Hofer (15) (04 EXP)	Hofer (14) (04 EXP)	Quonset	12/19/2005	2/17/2005
Tray 2 Round	134709452a	134764757a	11/14/2005		Hofer (14) (04 EXP)	Hofer (15) (04 EXP)	Quonset		
Tray 2	134953225a	133615593a	11/14/2005		Hofer (13) (04 EXP)	Hofer (14) (04 EXP)	Quonset		
Tray 3 Round	133553517a	134454273a	11/14/2005		Hofer (15) (04 EXP)	Hofer (14) (04 EXP)	Quonset		
Tray 3	133551220a	133833555a	11/14/2005		HoferxHarrison (46) (04 EXP)	HoferxHarrison (55) (04 EXP)	Quonset		
Tray 4 Round	133551220a	134418440a	11/14/2005		HoferxHarrison (46) (04 EXP)	Hofer (13) (04 EXP)	Quonset		
Tray 4	134616580a	133529345a	11/14/2005		HoferxHarrison (48) (04 EXP)	HoferxHarrison (54) (04 EXP)	Quonset	12/19/2005	2/17/2005
Tray 5 Round	135131196a	134424717a	11/14/2005		HoferxHarrison (48) (04 EXP)	HoferxHarrison (46) (04 EXP)	Quonset		
Tray 5	134616580a	134418440a	11/14/2005		HoferxHarrison (48) (04 EXP)	Hofer (13) (04 EXP)	Quonset	12/27/2005	2/24/2005
Tray 6 Round	133557615a	133533244a	11/14/2005		Hofer (13) (04 EXP)	HoferxHarrison (53) (04 EXP)	Quonset		
Tray 6	133557615a	133729211a	11/14/2005		Hofer (13) (04 EXP)	HoferxHarrison (26) (04 EXP)	Quonset		
Tray 7 Round	134871655a	133914593a	11/14/2005		Hofer (14) (04 EXP)	HoferxHarrison (53) (04 EXP)	Quonset		
Tray 7	134871655a	134619383a	11/14/2005		Hofer (14) (04 EXP)	HoferxHarrison (48) (04 EXP)	Quonset		.
									.
Elab Tank 12	133956316a	Clip \#6	12/1/2005	low x	HoferxCRR (30) (04 EXP)	Glenwood-CRR	Quonset	.	.
Elab Tank 13	134877377a	Clip \#9	12/1/2005	med x	HoferxCRR (37) (04 EXP)	Glenwood-CRR	Quonset		
Elab Tank 17	133749392a	Clip \#12	12/1/2005	low	HoferxCRR (24) (04 EXP)	Glenwood-CRR	Quonset		
Elab Tank 18	133532116a	Clip \#18	12/1/2005	med	HoferxCRR (33) (04 EXP)	Glenwood-CRR	Quonset		.
Elab Tank 19	133961134a	Clip \#17	12/1/2005	med	HoferxCRR (20) (04 EXP)	Glenwood-CRR	Quonset		.
Elab Tank 21	133533450a	Clip \#11	12/1/2005	low x	HoferxCRR (32) (04 EXP)	Glenwood-CRR	Quonset	12/27/2005	2/24/2005
Elab Tank 22	133962653a	Clip \#2	12/1/2005	low	HoferxCRR (36) (04 EXP)	Glenwood-CRR	Quonset	.	
Elab Tank 23	133547327a	Clip \# 13	12/1/2005	high x	HoferxCRR (9) (04 EXP)	Glenwood-CRR	Quonset	.	
Elab Tank 25	133745327a	Clip \# 7	12/1/2005	low	HoferxCRR (31) (04 EXP)	Glenwood-CRR	Quonset	12/27/2005	2/24/2005
Elab Tank 26	133533466a	Clip \#10	12/1/2005	med	HoferxCRR (2) (04 EXP)	Glenwood-CRR	Quonset	.	.
CRR (G1)	.	.			Glenwood-CRR	Glenwood-CRR	Quonset	1/1/2006	3/7/2006
CRR (G2)	.				Glenwood-CRR	Glenwood-CRR	Quonset	1/1/2006	3/7/2006
CRR (G3)	.	-	-		Glenwood-CRR	Glenwood-CRR	Quonset	1/1/2006	3/7/2006

Fish from each group were exposed to an average of 2,000 triactinomyxons per fish as two-month old fry. The fish were reared for five months post-exposure. Fish were fed a maintenance diet (Rangen trout feed, Rangen Inc., Buhl, Idaho) of roughly 2% body weight per day. Mortalities were removed and recorded daily. At the conclusion of the experiment, 10 fish were randomly selected from each family. The fish were measured and weighed, physical deformities were recorded, and heads were processed to enumerate myxospores per fish with the PTD (pepsin-trypsin digest) method.

Length, weight, and myxospore results were compared between strains using Proc GLM in SAS system software. If significant differences were observed, Tukey's Studentized Range (HSD) test was used to determine which strains differed from each other. Alpha was set at 0.05 for all tests.

RESULTS

The GR rainbow trout developed the lowest spore counts of the groups tested, averaging 1,482 spores per fish (Figure 2.1). The CRR families developed the highest spore counts, averaging 232,973 spores per fish. The F1 families averaged 47,128 spores per fish. These results were similar to those found in the prior experiment. The B2 families developed higher spore counts, averaging 125,168 spores per fish. The statistical tests indicated that the CRR strain had significantly higher spore counts than the GR, F1 and B2 strains. The B2 strain had significantly higher spore counts than the GR strain, but not significantly higher than the F1 strain. The spore counts in the GR and F1 strains were not significantly different from each other. The GR, B2 and F1 strains averaged $15.3,12.7$, and 10.9 grams, respectively, at the end of the experiment. The pure CRR strain weighed significantly less than the GR strain at 7.7 grams. The pure CRR strain grew to an average of 87.3 mm , which was significantly shorter than the pure GR, B2, and F1 strains at $113.5,108.4$, and 105.5 mm , respectively.

DISCUSSION

In both the 2004 exposure experiment (Schisler et al. 2006) and this experiment, the F1 generation exhibited noticeable variation in spore counts and physical deformities between families. Within family variation in infection severity was relatively low. In this experiment, the B 2 generation exhibited much more within family variation in infection severity (Figure 2.2). This is due to the re-assortment of genes and loss of resistance in some individual offspring of the B 2 generation, but not of others. Only individuals inheriting resistance to whirling disease will be successful with regard to survival and reproductive potential in areas where the parasite has eliminated pure CRR populations. The rapid loss of resistance to M. cerebralis in subsequent generations of back-crosses in a hatchery setting could result in selection pressures that do not attain the goal of wild-strain fish with resistance to the parasite. Space constraints also limit the scope of this type of intensive selection in an artificial setting. An alternative to selecting families in a fish culture facility is to allow the selection among first generation crosses to occur in the wild. The selection pressure for individuals with both wild characteristics and resistance to M. cerebralis is immediate in locations where the parasite is endemic.

Relatively good survival has been observed in first generation crosses in the wild (See Job 4, Whirling Disease Resistant Wild Strain Brood Stock Development and Evaluation). Therefore, it may be unnecessary to continue backcrossing F1 or B2 strains with pure CRR to ensure survival in the wild.

The level of resistance in the families and individuals created in this experiment were compared with the previous generation of crosses. Genetic samples were collected from every individual used as parents in these lineages, and all of the offspring evaluated for resistance in these experiments. Comparison of the resistance in these fish with the genetic profiles of multiple families and individuals will help identify markers for resistance. Future research will investigate the continued heritability of whirling disease resistance, as well as physiological performance and survival of these crosses in the wild.

Figure 2.1. Average spore counts for the three Hofer (GR), three Colorado River rainbow (CRR), ten F1 [GR-CRR (50:50)] and 16 B2 [GR-CRR (25:75)] strains. Each point represents average spore counts for each individual family.

Figure 2.2. Example of inter-family variability in infection severity. Spore counts for two F1 [GR-CRR (50:50)] families and two B2 [GR-CRR (25:75)] families are shown. Ten fish per family were sampled. In this graph each point represents spore counts for each individual fish. Note that the B2 families show a large range of variation, from 0 to almost 400,000 spores, whereas the F1 families show a smaller range of variation, from 0 to only about 100,000 spores.

References

Hedrick, R. P., T. S. McDowell, G. D. Marty, G. T. Fosgate, K. Mukkatira, K. Myklebust, and M. El Matbouli. 2003. Susceptibility of two strains of rainbow trout (one with suspected resistance to whirling disease) to Myxobolus cerebralis infection. Diseases of Aquatic Organisms 55:37-44.

Schisler, G. J. 2006. Salmonid Disease Studies. Federal Aid in Fish and Wildlife Restoration, Job Progress Report. Colorado Division of Wildlife, Fish Research Section. Fort Collins, Colorado.

Schisler, G. J., K. A. Myklebust, and R. P. Hedrick. 2006. Inheritance of Myxobolus cerebralis resistance among F1-generation crosses of whirling disease resistant and susceptible rainbow trout strains. Journal of Aquatic Animal Health 18:109115.

Experiment 2: Physiological characteristics and inheritance of Myxobolus cerebralis resistance among multiple generational crosses of the Hofer (GR) and Colorado River (CRR) rainbow trout strains.

INTRODUCTION

A laboratory experiment is currently being conducted at the Colorado Cooperative Fish and Wildlife Research Unit (COOP) wet lab in Fort Collins, Colorado to test the resistance of the German "Hofer" rainbow (GR) and Colorado River (CRR) rainbow trout strains, and crosses of these strains, to whirling disease. CRRs have historically been used for stocking in Colorado and they retain many of the desired wild rainbow trout characteristics needed to survive in Colorado's rivers and streams. The CRR strain is, unfortunately, highly susceptible to whirling disease and their populations have experienced dramatic declines over the past decade. The GR strain has demonstrated very strong resistance to whirling disease in past exposure experiments. However, because the GR strain is a highly domesticated food fish, their survival and viability in the wild is uncertain. Also, the consequences of stocking this strain directly into the wild are unknown. In 2003, a breeding program was established to examine various crosses between the GR and CRR trout strains, with the ultimate goal of identifying those crosses that have the correct combination of resistant rainbow trout characteristics and wild rainbow trout characteristics to survive and reproduce in the wild in areas where heavy Myxobolus cerebralis infection exists.

The resistance of two of these crosses, F1s and B2s, has been examined in previous exposure experiments (see previous section). F1s are the first filial generation cross between a pure GR individual and a pure CRR individual. B2s are the second generation backcross between an F1 individual and a pure CRR individual. These crosses were included in this exposure experiment to gain more knowledge about their inherited resistance to whirling disease. In addition, a third cross was included in this experiment to gain a better understanding of how resistant trout characteristics and wild trout characteristics are inherited in subsequent generations. This third cross is defined as true F2s, which are the second filial generation forward cross between two F1 individuals.

The ultimate goal of this laboratory experiment is to further evaluate the resistance of the GR and CRR trout strains and their crosses to whirling disease, and to evaluate other characteristics that may play an important role in their survival in the wild including swimming performance and predator avoidance. Growth and feed efficiencies were also very closely monitored in this experiment.

METHODS

Spawning of all families occurred at the Colorado Division of Wildlife Fish Research Hatchery (FRH) from mid-November 2006 through the end of January 2007. As in the previous experiment, both male and female pure GR and F1 fish are held on site
and pure CRR individuals are obtained from the Colorado Division of Wildlife Glenwood Springs Hatchery (GWSH). F1 individuals, tagged with Passive Integrated Transponder (PIT) tags, were identified by their 10 digit alpha numeric code (Table 2.1). An anal fin clip was taken from each spawned individual for later genetic analysis. Eggs were placed in incubators at the FRH or COOP wet lab and held until they were eyed (Table 2.1). Once eyed, picked eggs were placed in 20 gallon (76 liter) tanks containing short (7 cm) standpipes for a greater amount of water turnover at the COOP wet lab, where they were hatched.

Upon swim-up, tall (30 cm) standpipes were placed in the tanks and the fish were started on size 0 trout diet. After approximately 335 degree days (${ }^{\circ} \mathrm{C}$), fish were fed size 1 trout diet (Table 2.3). At this time, families were reduced to 50 fish per family. This was considered the beginning of the growth experiment. Each family was batch weighed and fed 4% of the total fish weight. Families were maintained at 50 fish until the day before infection in order to account for any mortality that may have occurred as a result of the switch to a larger feed size. An additional 50 fish from four of the families from each strain were removed and placed in uninfected control tanks (Table 2.2). At the time of infection, families were reduced to 25 fish. Again, fish were batch weighed and fed 4% of the total fish weight (Table 2.3). Control families were also reduced to 25 fish at this time. Fish were reweighed every two weeks and feed amount was changed accordingly. Fish were switched to size 2 trout diet at a batch weight of 75 grams, size 3 trout diet at a batch weight of 162.5 grams, and size 4 trout diet at a batch weight of 500 grams, according to hatchery trout feed guidelines (Tables 2.4 and 2.5).

Fish were infected at an average of 678 degree days $\left({ }^{\circ} \mathrm{C}\right)$ post-hatch (Table 2.1). Triactinomyxons (TAMs) for exposures beginning on February 15, 2007 and continuing through April 20, 2007 originated at Ron Hedrick's lab at U.C. Davis. TAMs for exposures after April 20, 2007 came from Barry Nehring with the Colorado Division of Wildlife in Montrose, Colorado. Cultures of TAMs in both cases were produced from Mt. Whitney Tubifex tubifex worms. TAMs were counted by mixing $1,000 \mu$ l of filtrate containing the TAMs and $60 \mu \mathrm{l}$ of crystal violet used to dye the TAMs to make them easier to see; 84.6μ of this mixture was then placed on a slide and TAMs per slide were counted. Ten counts were conducted on the filtrates prior to exposures to increase confidence in estimates of TAM concentrations in the filtrate. An average of the counts was taken, and this number was used to calculate the amount of TAMs per ml. Fish were infected with 2,000 TAMs per individual, a total of 50,000 TAMs per tank. Before exposure, the water flow to each aquarium was halted and each aquarium received copious aeration with an air stone to ensure full mixing of the TAMs and equal exposure of all fish. The approximate amount of filtrate to deliver 2,000 TAMs per fish was measured out, placed in a $1,000 \mathrm{ml}$ beaker, and evenly distributed throughout each aquarium. This was done in two passes to ensure equal distribution of TAMs in the tank and to account for a possible unequal distribution of TAMs within the filtrate. Water flow was halted for one hour to ensure complete infection of all fish.

Swimming experiments began on April 9, 2007. Five fish were randomly chosen from four randomly chosen families of each strain to be swum at two weeks, one month,
and two and a half months post-exposure in two Loligo ${ }^{\circledR}$ swimming flumes. Fish were marked before being swam with Northwest Marine Technologies fluorescent visual implant elastomer (VIE) tags so that the same fish could be swam at all three dates. After a fish was placed in the flume, it was run at the lowest speed of $2 \mathrm{~cm} / \mathrm{s}$ for one hour. This allowed the fish to acclimate to the flume and recover from handling. After the one hour acclimation period, the flume speed was increased to $5 \mathrm{~cm} / \mathrm{s}$ for ten minutes. Flume speed continued to be increased by $5 \mathrm{~cm} / \mathrm{s}$ every ten minutes until the fish reached its critical swimming velocity (CSV). The fish was considered to have reached its CSV when it was no longer swimming against the current and was pushed up against the screen at the back of the flume. The fish was then removed from the flume, measured and weighed, and allowed to recover in an aerated bucket held at the same temperature as the flume. A total of 535 fish will be swum over the course of this experiment. The goal of the swimming experiment is determine differences in CSVs between the strains, and to determine whether there is a difference in swimming ability between infected and noninfected fish within a strain. Swimming experiments will continue through mid-August 2007.

The exposure experiment will conclude once the fish have reached approximately 2,000 degree days $\left({ }^{\circ} \mathrm{C}\right)$ post-exposure, which is approximately five months post-exposure. Ten fish will be randomly removed from each tank, measured and weighed. The head of each individual will then be removed and cut in half from the nose to the back of the head. Half of the head will be used for histological analysis, and the other half will be used to determine spore load using pepsin tripsin digest (PTD) testing. In addition, the body of each individual will be kept and used to determine an average total lipid count for each strain. Following the conclusion of the exposure experiment, behavioral experiments will also be conducted using the remainder of the fish in each family. The goal of the behavior experiment is to determine the ability of a strain, as well as infected and non-infected fish within a strain, to detect and avoid predators.

Table 2．3．Family groups created for M ．cerebralis resistance experiment conducted at the Colorado Cooperative Fish and Wildlife Unit（COOP）wet lab in 2006－2007．

Group	Strain	Male	Female	Male Origin	Female Origin	Spawn Date	Location of Eggs	Status	Hatched	Dosed	Number	Degree Days	Tank
RH15		M15	F3－133653755A	GWSH	Group 35	12／12／2006	FRH	Original	1／9／2007	3／21／2007	25	629.30	40
RH16	B2（CRR ${ }^{\text {a }}$ x F 1 ¢ ）	M17	F10－133957222A	GWSH	Group 11	12／12／2006	FRH	Original	1／9／2007	3／13／2007	25	661.50	63
RH17	B2（CRR才）\times F1 ${ }^{\text {¢ }}$ ）	M18	F11－133661673A	GWSH	Group 25	12／12／2006	FRH	Original	1／9／2007	3／21／2007	25	629.30	3
RH18	B2（CRR ${ }^{\text {a }}$ x F 19 ）	M19	F12－134919273A	GWSH	Group 36	12／12／2006	FRH	Original	1／9／2007	3／21／2007	25	629.30	16
RH19	B2（CRRƠ \times F1早）	M20	F4－134836296A	GWSH	Group 36	12／12／2006	FRH	Original	Dead as eggs				
RH20	B2（CRR ${ }^{\text {a }}$ x F 1 ¢ ）	M21	F2－134521446A	GWSH	Group 11	12／12／2006	FRH	Original	1／9／2007	3／13／2007	25	661.50	55
RH37	B2（CRR ${ }^{\text {a }}$ F1？${ }^{\text {a }}$ ）	M37	F29－133662650A	GWSH	Group 31	12／28／2006	FRH	Original	1／27／2007	4／3／2007	25	718.00	66
RH39	B2（CRR ${ }^{\text {a }}$ x F 19 ）	M38	F30－133723393A	GWSH	Group 1	12／28／2006	FRH	Original	1／27／2007	4／6／2007	25	677.90	30
RH41		M39	F31－134546717A	GWSH	Group 31	12／28／2006	FRH	Original	1／27／2007	4／6／2007	25	677.90	32
RH43	B2（CRRƠ $\times \mathrm{F} 1$ ¢ $)$	M40	F32－134519513A	GWSH	Group 1	12／28／2006	FRH	Original	1／27／2007	4／6／2007	25	677.90	41
RH48	B2（CRR ${ }^{\text {a }}$ F1？${ }^{\text {a }}$ ）	M48	F36－134616152A	GWSH	Group 27	1／11／2007	FRH	Replaced RH19	2／8／2007	4／13／2007	25	668.3	68
QT71	B2（ $\mathrm{F} 1 \widehat{\delta}^{\text {x }}$ CRRq ）	M31－133752472A	F53	Group 43	GWSH	1／17／2007	COOP	Original	3／6／2007	5／4／2007	25	616.20	71
QT72	B2（F1ठ x CRR ）	M $45-135126471 \mathrm{~A}$	F54	Group 1	GWSH	1／17／2007	COOP	Original	3／13／2007	5／25／2007	25	716.80	8
QT73	B2（F1ठ） xCRR ¢）	M13－133648333A	F49	Group 35	GWSH	1／17／2007	COOP	Original	3／6／2007	5／4／2007	25	616.20	76
QT74	B2（F1 ${ }^{\text {a }} \times \mathrm{CRR}$ ） ）	M1－133874590A	F48	Group 30	GWSH	1／17／2007	COOP	Original	3／15／2007	5／29／2007	25	754.20	35
QT75	B2（F1ठ） xCRR ¢）	M3－134567394A	F52	Group 35	GWSH	1／17／2007	COOP	Original	3／6／2007	5／4／2007	25	616.20	74
QT76	B2（F1ठ \times CRR ${ }^{\text {a }}$ ）	M43－134746323A	F50	Group 11	GWSH	1／17／2007	COOP	Original	3／13／2007	5／25／2007	25	716.80	36
QT77	B2（F1ठ x CRR ）	M 42 －134961377A	F47	Group 30	GWSH	1／17／2007	COOP	Original	3／7／2007	5／8／2007	25	646.70	79
QT78	B2（F1 ${ }^{\text {a }} \times \mathrm{CRR}$ ） ）	M5－133669695A	F45	Group 11	GWSH	1／17／2007	COOP	Original	3／5／2007	5／4／2007	25	626.50	57
QT79	B2（ $\mathrm{F} 1 \delta{ }_{\text {人 }} \mathrm{CRR}$ ¢ $)$	M41－134936464A	F46	Group 30	GWSH	1／17／2007	COOP	Original	3／6／2007	5／4／2007	25	616.20	69
QT80	B2（F1ठ \times CRR ${ }^{\text {a }}$ ）	M14－134921616A	F44	Group 32	GWSH	1／17／2007	COOP	Original	3／14／2007	5／29／2007	25	762.70	31
RH101	B2（F1ठ x CRR ）	M41－134936464	F63	Group 30	GWSH	1／30／2007	FRH	Extras	Not Needed				
RH102	B2（F1 ${ }^{\text {a }} \times \mathrm{CRR}$ ） ）	M43－134746323	F61	Group 11	GWSH	1／30／2007	FRH	Extras	Not Needed				
RH103	B2（ $\mathrm{F} 1 \delta{ }^{\text {a }}$（ CRR ¢）	M3－134567394	F62	Group 35	GWSH	1／30／2007	FRH	Extras	Not Needed				
QT61	CRR	M54	F44	GWSH	GWSH	1／17／2007	COOP	Original	3／14／2007	5／29／2007	25	762.70	28
QT62	CRR	M55	F45	GWSH	GWSH	1／17／2007	COOP	Original	3／7／2007	5／8／2007	25	646.70	78
QT63	CRR	M56	F46	GWSH	GWSH	1／17／2007	COOP	Original	3／14／2007	5／29／2007	25	762.70	27
QT64	CRR	M57	F47	GWSH	GWSH	1／17／2007	COOP	Original	3／17／2007	5／29／2007	25	736.70	47

Table 2．3．（continued）．Family groups created for M．cerebralis resistance experiment conducted at the Colorado Cooperative Fish and Wildlife Unit（COOP）wet lab in 2006－2007．

Group	Strain	Male	Female	Male Origin	Female Origin	Spawn Date	Location of Eggs	Status	Hatched	Dosed	Number	Degree Days	Tank
QT65	CRR	M58	F48	GWSH	GWSH	1／17／2007	COOP	Original	3／13／2007	5／25／2007	25	716.80	15
QT66	CRR	M59	F49	GWSH	GWSH	1／17／2007	COOP	Original	3／12／2007	5／25／2007	25	725.20	39
QT67	CRR	M60	F50	GWSH	GWSH	1／17／2007	COOP	Original	3／5／2007	5／4／2007	25	626.50	79
QT68	CRR	M61	F51	GWSH	GWSH	1／17／2007	COOP	Original	3／5／2007	5／4／2007	25	626.50	80
QT69	CRR	M62	F52	GWSH	GWSH	1／17／2007	COOP	Original	3／5／2007	5／4／2007	25	626.50	56
QT70	CRR	M63	F53	GWSH	GWSH	1／17／2007	COOP	Original	3／10／2007	5／25／2007	25	742.30	5
RH85	CRR	M64	F56	GWSH	GWSH	1／30／2007	FRH	Extras	Not Needed				
RH86	CRR	M65	F57	GWSH	GWSH	1／30／2007	FRH	Extras	Not Needed				
RH87	CRR	M66	F58	GWSH	GWSH	1／30／2007	FRH	Extras	Not Needed				
RH21	F1（CRR ${ }^{\text {x }}$（ GR¢ ）	M22	F13	GWSH	BFRH－RW9	12／12／2006	FRH	Original	1／9／2007	3／21／2007	25	629.30	13
RH22	F1（CRR欠̂ x GR¢）	M23	F14	GWSH	BFRH－RW9	12／12／2006	FRH	Original	Dead as eggs				
RH23	F1（CRR ${ }^{\text {x }}$ GR¢ ${ }^{\text {）}}$	M24	F15	GWSH	BFRH－RW9	12／12／2006	FRH	Original	Dead as eggs				
RH24	F1（CRR ${ }^{\text {x }}$ GR¢ ）	M25	F16	GWSH	BFRH－RW9	12／12／2006	FRH	Original	1／9／2007	3／21／2007	25	629.30	33
RH25		M26	F17	GWSH	BFRH－RW9	12／12／2006	FRH	Original	1／9／2007	3／13／2007	25	661.50	61
RH26	F1（CRR欠̂ x GR¢）	M29	F18	GWSH	BFRH－RW9	12／12／2006	FRH	Original	1／9／2007	3／13／2007	25	661.50	54
RH27	F1（CRR ${ }^{\text {x }}$ GR¢ ${ }_{\text {）}}$	M30	F19	GWSH	BFRH－RW9	12／12／2006	FRH	Original	1／9／2007	3／21／2007	25	629.30	2
RH28	F1（CRR ${ }^{\text {¢ }} \times \mathrm{GR}$ ¢ ）	M31	F20	GWSH	BFRH－RW9	12／12／2006	FRH	Original	1／9／2007	3／21／2007	25	629.30	48
RH29		M33	F21	GWSH	BFRH－RW9	12／12／2006	FRH	Original	Dead as eggs				
RH30	F1（CRR ${ }^{\text {¢ }} \times \mathrm{GR}$ ¢ ）	M34	F22	GWSH	BFRH－RW9	12／12／2006	FRH	Original	1／9／2007	3／21／2007	25	629.30	37
RH56	F1（CRR ${ }^{\text {x }}$ GR¢ ${ }_{\text {）}}$	M49	F39	GWSH	BFRH－RW9	1／11／2007	FRH	Replaced RH22	2／12／2007	4／27／2007	25	691.20	11
RH57	F1（CRR ${ }^{\text {x }}$ GR¢ ）	M50	F40	GWSH	BFRH－RW9	1／11／2007	FRH	Extras	Not Needed				
RH58	F1（CRR ${ }^{\text {x }}$ GR¢ ）	M51	F41	GWSH	BFRH－RW9	1／11／2007	FRH	Replaced RH23	2／8／2007	4／24／2007	25	697.10	14
RH59	F1（CRR欠̂ x GR¢）	M52	F42	GWSH	BFRH－RW9	1／11／2007	FRH	Extras	Dead as eggs				
RH60	F1（CRR ${ }^{\text {x }}$ GR¢ ${ }_{\text {）}}$	M53	F43	GWSH	BFRH－RW9	1／11／2007	FRH	Replaced RH29	2／8／2007	4／24／2007	25	697.10	25
RH100	F1（GRôx CRR ¢ ）	M79	F70	BFRH－RW6	GWSH	1／30／2007	FRH	Replaced RH93	2／27／2007	5／1／2007	25	679.30	52
RH88	F1（GRठ x CRR ${ }_{\text {c }}$ ）	M67	F58	BFRH－RW6	GWSH	1／30／2007	FRH	Original	2／26／2007	5／11／2007	25	734.20	9
RH89	F1（GRôx CRR ¢）	M68	F59	BFRH－RW6	GWSH	1／30／2007	FRH	Original	Dead as eggs				
RH90	F1（GRठ x CRR$¢$ ）	M69	F59	BFRH－RW6	GWSH	1／30／2007	FRH	Original	Dead as eggs				

Table 2.3. (continued). Family groups created for M. cerebralis resistance experiment conducted at the Colorado Cooperative Fish and Wildlife Unit (COOP) wet lab in 2006-2007.

Group	Strain	Male	Female	Male Origin	Female Origin	Spawn Date	Location of Eggs	Status	Hatched	Dosed	Number	Degree Days	Tank
RH91	F1 (GRơ x CRR¢)	M70	F61	BFRH - RW6	GWSH	1/30/2007	FRH	Original	2/27/2007	5/11/2007	25	722.80	20
RH92	F1 (GRôx CRR ¢)	M71	F62	BFRH - RW6	GWSH	1/30/2007	FRH	Original	2/27/2007	5/1/2007	25	679.30	62
RH93	F1 (GRơ x CRR¢)	M72	F63	BFRH - RW6	GWSH	1/30/2007	FRH	Original	Dead as eggs				
RH94	F1 (GRठ \times CRR ${ }^{\text {c }}$)	M73	F64	BFRH - RW6	GWSH	1/30/2007	FRH	Original	2/27/2007	5/11/2007	25	722.80	38
RH95	F1 (GRôx x CRR? ${ }^{\text {a }}$	M74	F65	BFRH - RW6	GWSH	1/30/2007	FRH	Original	2/27/2007	5/11/2007	25	722.80	34
RH96	F1 (GR ${ }^{\text {® }} \times \mathrm{CRR}$ ¢ $)$	M75	F66	BFRH - RW6	GWSH	1/30/2007	FRH	Original	2/27/2007	5/1/2007	25	679.30	73
RH97	F1 (GRơ x CRR? ${ }^{\text {) }}$	M76	F67	BFRH - RW6	GWSH	1/30/2007	FRH	Original	2/27/2007	5/11/2007	25	722.80	44
RH98		M77	F68	BFRH - RW6	GWSH	1/30/2007	FRH	Replaced RH89	2/27/2007	5/1/2007	25	679.30	64
RH99	F1 (GRठ \times CRR $¢$)	M78	F69	BFRH - RW6	GWSH	1/30/2007	FRH	Replaced RH90	2/27/2007	5/11/2007	25	722.80	17
RH2	F1 x B2	M2 - 146147570A	F2-134521446A	Group 14	Group 11	11/28/2006	FRH	Extras	Not Needed				
RH4	F1 x B2	M $4-146216311 \mathrm{~A}$	F3-133653755A	Group 20	Group 35	11/28/2006	FRH	Extras	Not Needed				
RH7	F1 x B2	M7-146217514A	F4-1348362296A	Group 29	Group 36	11/28/2006	FRH	Extras	Not Needed				
RH1	F2	M1-133874590A	F1-133735465A	Group 30	Group 25	11/21/2006	FRH	Original	12/19/2006	2/15/2007	25	640.40	49
RH13	F2	M13-133648333A	F10-133957222A	Group 35	Group 11	12/6/2006	FRH	Original	1/3/2007	3/6/2007	25	670.50	65
RH14	F2	M14-134921616A	F11-133661673A	Group 32	Group 25	12/6/2006	FRH	Original	1/3/2007	3/6/2007	24	670.50	67
RH3	F2	M3-134567394A	F2-134521446A	Group 35	Group 11	11/28/2006	FRH	Original	12/27/2006	3/6/2007	26	640.40	7
RH38	F2	M41-134936464A	F29-133662650A	Group 30	Group 31	12/28/2006	FRH	Original	2/3/2007	4/24/2007	25	707.80	46
RH40	F2	M42-134961377A	F30-133723393A	Group 30	Group 1	12/28/2006	FRH	Original	2/5/2007	4/24/2007	25	692.60	12
RH42	F2	M $43-134746323 \mathrm{~A}$	F31-134546717A	Group 11	Group 31	12/28/2006	FRH	Original	1/30/2007	4/20/2007	25	700.30	6
RH44	F2	M44-134757611A	F32-134519513A	Group 36	Group 1	12/28/2006	FRH	Original	1/27/2007	4/6/2007	25	677.90	41
RH45	F2	M45-135126471A	F33-134835230A	Group 1	Group 43	12/28/2006	FRH	Original	2/3/2007	4/24/2007	25	707.80	21
RH46	F2	M46-133611735A	F34-133961091A	Group 1	Group 31	12/28/2006	FRH	Original	1/29/2007	4/3/2007	25	662.30	77
RH47	F2	M47-133736183A	F35-134963295A	Group 36	Group 28	12/28/2006	FRH	Original	Dead as eggs				
RH49	F2	M31-133752472A	F36-134616152A	Group 43	Group 27	1/11/2007	FRH	Original	2/13/2007	4/17/2007	25	646.50	72
RH5	F2	M5 - 133669695A	F3-133653755A	Group 11	Group 35	11/28/2006	FRH	Original	12/27/2006	3/6/2007	25	640.40	4
RH50	F2	M14-134921616A	F36-134616152A	Group 32	Group 27	1/11/2007	FRH	Original	2/19/2007	5/8/2007	25	710.30	18
RH51	F2	M46-133611735A	F37-134511752A	Group 1	Group 30	1/11/2007	FRH	Original	2/20/2007	5/8/2007	25	702.40	26
RH52	F2	M13-133648333A	F37-134511752A	Group 35	Group 30	1/11/2007	FRH	Original	2/13/2007	4/17/2007	25	646.50	53

Table 2.3. (continued). Family groups created for M. cerebralis resistance experiment conducted at the Colorado Cooperative Fish and Wildlife Unit (COOP) wet lab in 2006-2007.

Group	Strain	Male	Female	Male Origin	Female Origin	Spawn Date	Location of Eggs	Status	Hatched	Dosed	Number	Degree Days	Tank
RH53	F2	M3-134567394A	F37-134511752A	Group 35	Group 30	1/11/2007	FRH	Original	2/18/2007	5/4/2007	25	679.20	1
RH54	F2	M44-134757611A	F38-134963512A	$\text { Group } 36$	$\text { Group } 28$	1/11/2007	FRH	Original	2/25/2007	5/11/2007	25	692.60	43
RH55	F2	M54-133728447A	F38-134963512A	$\text { Group } 27$	$\text { Group } 28$	1/11/2007	FRH	Original	2/22/2007	5/11/2007	25	715.70	29
RH6	F2	M6-134569186A	F4-134836296A	Group 28	Group 36	11/28/2006	FRH	Original	12/27/2006	3/6/2007	25	640.40	42
RH81	F2	M46-133611735A	F54-134961627A	Group 1	Group 31	1/17/2007	FRH	Replaced RH47	2/17/2007	4/20/2007	25	639.80	51
RH82	F2	M44-134757611A	F54-134961627A	$\text { Group } 36$	$\text { Group } 31$	1/17/2007	FRH	Extras	Not Needed				
RH83	F2	M6-134569186A	F55-133668221A	Group 28	Group 43	1/17/2007	FRH	Extras	Not Needed				
RH84	F2	M54-133728447A	F55-133668221A	Group 27	Group 43	1/17/2007	FRH	Extras	Not Needed				
RH10	GR	M10	F7	BFRH - RW2	BFRH - RW6	11/29/2006	FRH	Original	12/27/2006	3/6/2007	25	640.40	22
RH11	GR	M11	F8	BFRH-RW2	BFRH - RW6	11/29/2006	FRH	Original	12/27/2006	2/23/2007	25	661.90	60
RH12	GR	M12	F9	BFRH - RW2	BFRH - RW6	11/29/2006	FRH	Original	12/27/2006	3/6/2007	25	640.40	23
RH31	GR	M31	F23	BFRH - RW6	BFRH - RW9	12/13/2006	FRH	Original	1/11/2007	3/13/2007	25	656.20	70
RH32	GR	M32	F24	BFRH - RW6	BFRH - RW9	12/13/2006	FRH	Original	1/11/2007	3/13/2007	25	656.20	75
RH33	GR	M33	F25	BFRH - RW6	BFRH - RW9	12/13/2006	FRH	Original	Dead as eggs				
RH34	GR	M34	F26	BFRH -RW6	BFRH - RW9	12/13/2006	FRH	Original	1/10/2007	3/13/2007	25	668.20	50
RH35	GR	M35	F27	BFRH - RW6	BFRH - RW9	12/13/2006	FRH	Original	1/11/2007	4/11/2007	24	797.8	19
RH36	GR	M36	F28	BFRH - RW6	BFRH - RW9	12/13/2006	FRH	Replaced RH33	1/11/2007	4/11/2007	25	797.8	45
RH8	GR	M8	F5	BFRH-RW2	BFRH - RW6	11/29/2006	FRH	Original	12/27/2006	2/23/2007	25	661.90	58
RH9	GR	M9	F6	BFRH - RW2	BFRH - RW6	11/29/2006	FRH	Original	12/27/2006	3/6/2007	25	640.40	10

Table 2.4. Control groups separated from family groups created for M. cerebralis resistance experiment conducted at the Colorado Cooperative Fish and Wildlife Unit (COOP) wet lab in 2006-2007.

Group	Strain	Male	Female	Male Origin	Female Origin	Spawn Date	Location of Eggs	Status	Hatched	Dosed	Number	Degree Days	Tank
RH8	GR	M8	F5	BFRH - RW2	BFRH - RW6	11/29/2006	FRH	Original	12/27/2006	N/A	25	N/A	C1
RH11	GR	M11	F8	BFRH - RW2	BFRH - RW6	11/29/2006	FRH	Original	12/27/2006	N/A	25	N/A	C14
RH34	GR	M34	F26	BFRH -RW6	BFRH - RW9	12/13/2006	FRH	Original	1/10/2007	N/A	25	N/A	C4
RH36	GR	M36	F28	BFRH - RW6	BFRH - RW9	12/13/2006	FRH	Replaced RH33	1/11/2007	N/A	25	N/A	C11
QT68	CRR	M61	F51	GWSH	GWSH	1/17/2007	COOP	Original	3/5/2007	N/A	25	N/A	C15
QT62	CRR	M55	F45	GWSH	GWSH	1/17/2007	COOP	Original	3/7/2007	N/A	25	N/A	C16
QT70	CRR	M63	F53	GWSH	GWSH	1/17/2007	COOP	Original	3/10/2007	N/A	25	N/A	C10
QT63	CRR	M56	F46	GWSH	GWSH	1/17/2007	COOP	Original	3/14/2007	N/A	25	N/A	C7
RH27	F1 (CRR ${ }^{\text {a }}$ x GR)	M30	F19	GWSH	BFRH - RW9	12/12/2006	FRH	Original	1/9/2007	N/A	25	N/A	C19
RH30	F1 (CRRÔx GRQ)	M34	F22	GWSH	BFRH - RW9	12/12/2006	FRH	Original	1/9/2007	N/A	25	N/A	C20
RH92	F1 (GRô xCRR)	M71	F62	BFRH - RW6	GWSH	1/30/2007	FRH	Original	2/27/2007	N/A	25	N/A	C17
RH97	F1 (GR才 ${ }^{\text {x }}$ CRR)	M76	F67	BFRH - RW6	GWSH	1/30/2007	FRH	Original	2/27/2007	N/A	25	N/A	C2
RH1	F2	M1-133874590A	F1-133735465A	Group 30	Group 25	11/21/2006	FRH	Original	12/19/2006	N/A	25	N/A	C9
RH5	F2	M5-133669695A	F3-133653755A	Group 11	Group 35	11/28/2006	FRH	Original	12/27/2006	N/A	25	N/A	C13
RH3	F2	M3-134567394A	F2-134521446A	Group 35	Group 11	11/28/2006	FRH	Original	12/27/2006	N/A	26	N/A	C3
RH14	F2	M14-134921616A	F11-133661673A	Group 32	Group 25	12/6/2006	FRH	Original	1/3/2007	N/A	25	N/A	C6
QT78	B2 (F1ơ x CRR ${ }^{\text {a }}$)	M5-133669695A	F45	Group 11	GWSH	1/17/2007	COOP	Original	3/5/2007	N/A	25	N/A	C5
QT72	B2 (F1oेx CRRP)	M45-135126471A	F54	Group 1	GWSH	1/17/2007	COOP	Original	3/13/2007	N/A	25	N/A	C8
RH16		M17	F10-133957222A	GWSH	Group 11	12/12/2006	FRH	Original	1/9/2007	N/A	25	N/A	C12
RH17		M18	F11-133661673A	GWSH	Group 25	12/12/2006	FRH	Original	1/9/2007	N/A	25	N/A	C18

Table 2.5. Batch weights and feed amounts for families on size 1 Rangen trout diet for M. cerebralis resistance experiment conducted at the Colorado Cooperative Fish and Wildlife Unit (COOP) wet lab in 2006-2007.

Tank \#	Group	Strain	Date on Size 1	DD@ Size 0	\# Fish	Batch Weight	Feed 4\% (grams)	Date Reduced	\# Fish	Batch Weight	Feed 4\% (grams)
40	RH15	B2 CRR(m) x F1(f)	3/3/2007	327.7	50	12	0.48	3/20/2007	25	10	0.4
63	RH16	B2 CRR(m) x F1(f)	2/25/2007	347.4	50	22	0.88	3/12/2007	25	18	0.72
C12	RH16	B2 CRR(m) x F1(f)	2/25/2007	347.4	50	22	0.88	3/12/2007	25	20	0.8
3	RH17	B2 CRR(m) x F1(f)	3/3/2007	327.7	50	21	0.84	3/20/2007	25	15	0.6
C18	RH17	B2 CRR(m) x F1(f)	3/3/2007	327.7	50	21	0.84	3/20/2007	25	17	0.68
16	RH18	B2 CRR(m) x F1(f)	3/3/2007	327.7	50	18	0.72	3/20/2007	25	15	0.6
55	RH20	B2 CRR(m) x F1(f)	2/25/2007	347.4	50	13	0.52	3/12/2007	25	12	0.48
66	RH37	B2 CRR(m) x F1(f)	3/11/2007	349.2	50	15	0.6	3/29/2007	25	15	0.6
30	RH39	B2 CRR(m) x F1(f)	3/15/2007	331.5	50	21	0.84	4/5/2007	25	20	0.8
32	RH41	$\mathrm{B} 2 \mathrm{CRR}(\mathrm{m}) \times \mathrm{F} 1(\mathrm{f})$	3/15/2007	331.5	50	15	0.6	4/5/2007	25	15	0.6
41	RH43	B2 CRR(m) x F1(f)	3/15/2007	331.5	48	23	0.92	4/5/2007	25	21	0.84
68	RH48	B2 CRR(m) x F1(f)	4/3/2007	383.2	50	18	0.72	4/10/2007	25	12	0.48
71	QT71	B2 F1(m) x CRR(f)	4/30/2007	352.4	50	17	0.68	5/3/2007	25	9	0.36
8	QT72	B2 F1 (m) x CRR(f)	5/13/2007	358	50	19	0.76	5/24/2007	25	15	0.6
C8	QT72	B2 F1 (m) x CRR(f)	5/13/2007	358	50	18	0.72	5/24/2007	25	14	0.56
76	QT73	B2 F1(m) x CRR(f)	4/30/2007	342.2	50	17	0.68	5/3/2007	25	10	0.4
35	QT74	B2 F1 (m) x CRR(f)	5/13/2007	358	50	23	0.92	5/29/2007	25	20	0.8
74	QT75	B2 F1(m) x CRR(f)	5/1/2007	333.2	50	15	0.6	5/3/2007	25	8	0.32
36	QT76	B2 F1 (m) x CRR(f)	5/13/2007	358	50	21	0.84	5/24/2007	25	16	0.64
59	QT77	B2 F1(m) x CRR(f)	4/30/2007	342.2	50	18	0.72	5/7/2007	25	11	0.44
57	QT78	B2 F1 (m) x CRR(f)	4/30/2007	352.4	50	21	0.84	5/3/2007	25	12	0.48
C5	QT78	B2 F1(m) x CRR(f)	4/30/2007	352.4	50	21	0.84	5/3/2007	25	12	0.48
69	QT79	B2 F1 (m) x CRR(f)	5/1/2007	333.2	50	17	0.68	5/3/2007	25	11	0.44
31	QT80	B2 F1(m) x CRR(f)	5/17/2007	363.1	50	16	0.64	5/29/2007	25	14	0.56
28	QT61	CRR	5/13/2007	358	50	17	0.68	5/29/2007	25	15	0.6
78	QT62	CRR	4/30/2007	352.4	50	17	0.68	5/7/2007	25	10	0.4
C16	QT62	CRR	4/30/2007	352.4	50	18	0.72	5/7/2007	25	10	0.4
27	QT63	CRR	5/13/2007	358	50	18	0.72	5/29/2007	25	16	0.64

Table 2.5. (continued). Batch weights and feed amounts for families on size 1 Rangen trout diet for M. cerebralis resistance experiment conducted at the Colorado Cooperative Fish and Wildlife Unit (COOP) wet lab in 2006-2007.

Tank \#	Group	Strain	Date on Size 1	DD@ Size 0	\# Fish	Batch Weight	Feed 4\% (grams)	Date Reduced	\# Fish	Batch Weight	Feed 4\% (grams)
C7	QT63	CRR	5/13/2007	358	50	18	0.72	5/29/2007	25	16	0.64
47	QT64	CRR	5/17/2007	363.1	50	16	0.64	5/29/2007	25	11	0.44
15	QT65	CRR	5/13/2007	358	50	17	0.68	5/24/2007	25	13	0.52
39	QT66	CRR	5/13/2007	358	50	18	0.72	5/24/2007	25	13	0.52
79	QT67	CRR	4/30/2007	352.4	50	16	0.64	5/3/2007	25	9	0.36
80	QT68	CRR	4/30/2007	352.4	50	17	0.68	5/3/2007	25	11	0.44
C15	QT68	CRR	4/30/2007	352.4	50	18	0.72	5/3/2007	25	10	0.4
56	QT69	CRR	5/1/2007	333.2	50	17	0.68	5/3/2007	25	9	0.36
5	QT70	CRR	5/8/2007	341.2	50	18	0.72	5/24/2007	25	16	0.64
C10	QT70	CRR	5/8/2007	341.2	50	18	0.72	5/24/2007	25	14	0.56
13	RH21	F1 CRR(m) x $\mathrm{HOF}(\mathrm{f})$	3/3/2007	327.7	50	21	0.84	3/20/2007	25	17	0.68
33	RH24	F1 CRR(m) $\times \operatorname{HOF}(\mathrm{f})$	3/3/2007	327.7	37	19	0.76	3/20/2007	25	20	0.8
61	RH25	F1 CRR(m) x $\mathrm{HOF}(\mathrm{f})$	2/25/2007	347.4	50	21	0.84	3/12/2007	25	20	0.8
54	RH26	F1 CRR(m) $\times \operatorname{HOF}(\mathrm{f})$	2/25/2007	347.4	50	22	0.88	3/12/2007	25	18	0.72
2	RH27	F1 CRR(m) x HOF(f)	3/3/2007	327.7	50	21	0.84	3/20/2007	25	18	0.72
C19	RH27	F1 CRR(m) x $\mathrm{HOF}(\mathrm{f})$	3/3/2007	327.7	50	22	0.88	3/20/2007	25	20	0.8
48	RH28	F1 CRR(m) x $\mathrm{HOF}(\mathrm{f})$	3/3/2007	327.7	27	15	0.6	3/20/2007	25	20	0.8
37	RH30	F1 CRR(m) x $\mathrm{HOF}(\mathrm{f})$	3/3/2007	327.7	50	22	0.88	3/20/2007	25	17	0.68
C20	RH30	F1 CRR(m) \times HOF(f)	3/3/2007	327.7	50	22	0.88	3/20/2007	25	18	0.72
11	RH56	F1 CRR(m) x $\mathrm{HOF}(\mathrm{f})$	4/4/2007	338.6	50	22	0.88	4/26/2007	25	24	0.96
14	RH58	F1 CRR(m) x $\mathrm{HOF}(\mathrm{f})$	4/4/2007	338.6	50	23	0.92	4/23/2007	25	24	0.96
25	RH60	F1 CRR(m) x $\mathrm{HOF}(\mathrm{f})$	4/4/2007	338.6	50	20	0.8	4/23/2007	25	17	0.68
52	RH100	F1 $\operatorname{HOF}(\mathrm{m}) \times \mathrm{CRR}(\mathrm{f})$	4/19/2007	346.7	50	19	0.76	4/30/2007	25	14	0.56
9	RH88	F1 HOF(m) x CRR(f)	4/23/2007	333.6	50	23	0.92	5/10/2007	25	22	0.88
20	RH91	F1 HOF(m) x CRR(f)	4/23/2007	333.6	50	20	0.8	5/10/2007	25	19	0.76
62	RH92	F1 HOF(m) x CRR(f)	4/22/2007	358.1	50	30	1.2	4/30/2007	25	21	0.84
C17	RH92	F1 $\mathrm{HOF}(\mathrm{m}) \times \mathrm{CRR}(\mathrm{f})$	4/22/2007	358.1	50	28	1.12	4/30/2007	25	20	0.8

Table 2.5. (continued). Batch weights and feed amounts for families on size 1 Rangen trout diet for M. cerebralis resistance experiment conducted at the Colorado Cooperative Fish and Wildlife Unit (COOP) wet lab in 2006-2007.

Tank \#	Group	Strain	Date on Size 1	DD @ Size 0	\# Fish	Batch Weight	Feed 4\% (grams)	Date Reduced	\# Fish	Batch Weight	Feed 4\% (grams)
38	RH94	F1 $\operatorname{HOF}(\mathrm{m}) \times \mathrm{CRR}$ (f)	4/23/2007	333.6	50	18	0.72	5/10/2007	25	18	0.72
34	RH95	F1 $\operatorname{HOF}(\mathrm{m}) \times \mathrm{CRR}(\mathrm{f})$	4/23/2007	333.6	50	15	0.6	5/10/2007	25	12	0.48
73	RH96	F1 $\mathrm{HOF}(\mathrm{m}) \times \operatorname{CRR}(\mathrm{f})$	4/19/2007	346.7	50	19	0.76	4/30/2007	25	13	0.52
44	RH97	F1 $\operatorname{HOF}(\mathrm{m}) \times \mathrm{CRR}(\mathrm{f})$	4/23/2007	333.6	50	24	0.96	5/10/2007	25	21	0.84
C2	RH97	F1 $\mathrm{HOF}(\mathrm{m}) \times \mathrm{CRR}$ (f)	4/23/2007	333.6	50	24	0.96	5/10/2007	25	20	0.8
64	RH98	F1 $\operatorname{HOF}(\mathrm{m}) \times \mathrm{CRR}(\mathrm{f})$	4/22/2007	358.1	50	16	0.64	4/30/2007	25	11	0.44
17	RH99	F1 $\mathrm{HOF}(\mathrm{m}) \times \mathrm{CRR}(\mathrm{f})$	4/23/2007	333.6	50	19	0.76	5/10/2007	25	16	0.64
44	RH2	F1xB2	2/14/2007	338.5	50	23	0.92	N/A - Killed	N/A	N/A	N/A
30	RH4	F1xB2	2/14/2007	338.5	50	19	0.76	N/A - Killed	N/A	N/A	N/A
34	RH7	F1xB2	2/14/2007	338.5	50	20	0.8	N/A - Killed	N/A	N/A	N/A
49	RH1	F2 F1 (m) x F1(f)	1/30/2007	337.2	50	19	0.76	2/14/2007	25	24	0.96
C9	RH1	F2 F1(m) \times F1(f)	1/30/2007	337.2	50	20	0.8	2/14/2007	25	19	0.76
65	RH13	F2 F1(m) x F1(f)	2/18/2007	340.5	50	18	0.72	3/5/2007	25	15	0.6
67	RH14	F2 F1(m) x F1(f)	2/18/2007	340.5	50	19	0.76	3/5/2007	25	17	0.68
C6	RH14	F2 F1(m) x F1(f)	2/18/2007	340.5	50	20	0.8	3/5/2007	25	19	0.76
7	RH3	F2 F1(m) x F1(f)	2/14/2007	338.5	50	22	0.88	3/5/2007	26	17	0.68
C3	RH3	F2 F1(m) x F1(f)	2/14/2007	338.5	50	23	0.92	3/5/2007	25	20	0.8
46	RH38	F2 F1(m) x F1(f)	4/15/2007	344.8	50	19	0.76	4/23/2007	25	10	0.4
12	RH40	F2 F1(m) x F1(f)	4/15/2007	344.8	50	22	0.88	4/23/2007	25	14	0.56
6	RH42	F2 F1(m) x F1(f)	4/4/2007	338.6	50	14	0.56	4/19/2007	25	12	0.48
21	RH45	F2 F1 (m) x F1(f)	4/12/2007	341.5	50	14	0.56	4/23/2007	25	9	0.36
77	RH46	F2 F1(m) x F1(f)	3/23/2007	334.1	50	19	0.76	4/2/2007	25	14	0.56
72	RH49	F2 F1(m) x F1(f)	4/14/2007	330.7	50	12	0.48	4/16/2007	25	7	0.28
4	RH5	F2 F1(m) x F1(f)	2/14/2007	338.5	50	20	0.8	3/5/2007	25	15	0.6
C13	RH5	F2 F1(m) x F1(f)	2/14/2007	338.5	50	19	0.76	3/5/2007	25	19	0.76
18	RH50	F2 F1(m) x F1(f)	4/23/2007	333.6	50	18	0.72	5/7/2007	25	15	0.6
26	RH51	F2 F1(m) x F1(f)	4/30/2007	343.2	50	14	0.56	5/7/2007	25	9	0.36
53	RH52	F2 F1(m) \times F1(f)	4/10/2007	331.4	50	17	0.68	4/16/2007	25	11	0.44

Table 2.5. (continued). Batch weights and feed amounts for families on size 1 Rangen trout diet for M. cerebralis resistance experiment conducted at the Colorado Cooperative Fish and Wildlife Unit (COOP) wet lab in 2006-2007.

Tank \#	Group	Strain	Date on Size 1	DD @ Size 0	\# Fish	Batch Weight	Feed 4\% (grams)	Date Reduced	\# Fish	Batch Weight	Feed 4\% (grams)
1	RH53	F2 F1(m) x F1(f)	4/30/2007	343.2	50	20	0.8	5/3/2007	25	12	0.48
43	RH54	F2 F1(m) x F1(f)	5/3/2007	346.3	50	17	0.68	5/11/2007	25	12	0.48
29	RH55	F2 F1 (m) x F1(f)	4/30/2007	343.2	50	16	0.64	5/10/2007	25	12	0.48
42	RH6	F2 F1(m) \times F1(f)	2/14/2007	338.5	50	21	0.84	3/5/2007	25	19	0.76
51	RH81	F2 F1(m) x F1(f)	4/14/2007	330.7	50	10	0.4	4/19/2007	25	5	0.2
24	RH83	F2 F1(m) x F1(f)	4/30/2007	343.2	50	12	0.48	5/11/2007	24	9	0.36
22	RH10	GR	2/14/2007	338.5	50	19	0.76	3/5/2007	25	15	0.6
60	RH11	GR	2/8/2007	335.9	50	18	0.72	2/22/2007	25	18	0.72
C14	RH11	GR	2/8/2007	335.9	50	20	0.8	2/22/2007	25	20	0.8
23	RH12	GR	2/14/2007	338.5	50	22	0.88	3/5/2007	25	19	0.76
70	RH31	GR	3/1/2007	329.6	50	14	0.56	3/12/2007	25	11	0.44
75	RH32	GR	3/3/2007	329.3	50	30	1.2	3/12/2007	25	21	0.84
50	RH34	GR	3/1/2007	329.6	50	14	0.56	3/12/2007	25	11	0.44
C4	RH34	GR	3/1/2007	329.6	50	13	0.52	3/12/2007	25	9	0.36
19	RH35	GR	3/11/2007	331	50	14	0.56	4/10/2007	25	19	0.76
45	RH36	GR	3/15/2007	334.1	50	13	0.52	4/10/2007	25	16	0.64
C11	RH36	GR	3/15/2007	334.1	50	13	0.52	4/10/2007	25	16	0.64
58	RH8	GR	2/8/2007	335.9	50	21	0.84	2/22/2007	25	19	0.76
C1	RH8	GR	2/8/2007	335.9	50	20	0.8	2/22/2007	25	21	0.84
10	RH9	GR	2/14/2007	338.5	50	22	0.92	3/5/2007	25	19	0.76

Table 2.6. Batch weights and feed amounts for families on size 2 Rangen trout diet for M. cerebralis resistance experiment conducted at the Colorado Cooperative Fish and Wildlife Unit (COOP) wet lab in 2006-2007.

Tank \#	Group	Strain	Date on Size 2	DD @ Size 1	\# Fish	Grams	Feed 4\% (grams)
C12	RH16	B2 CRR(m) x F1(f)	5/7/2007	727.6	25	89	3.56
63	RH16	B2 CRR(m) x F1(f)	5/7/2007	727.6	25	81	3.24
C18	RH17	B2 CRR(m) x F1(f)	5/15/2007	751.6	25	92	3.68
3	RH17	B2 CRR(m) x F1(f)	5/15/2007	682.5	25	83	3.32
30	RH39	B2 CRR(m) x F1(f)	5/17/2007	605	25	80	3.2
13	RH21	$\mathrm{F} 1 \mathrm{CRR}(\mathrm{m}) \times \operatorname{HOF}(\mathrm{f})$	5/15/2007	682.5	25	99	3.96
33	RH24	F1 CRR(m) x $\mathrm{HOF}(\mathrm{f})$	5/15/2007	682.5	25	98	3.92
61	RH25	F1 CRR(m) x $\mathrm{HOF}(\mathrm{f})$	4/23/2007	590.9	25	88	3.52
54	RH26	F1 CRR(m) x $\mathrm{HOF}(\mathrm{f})$	5/7/2007	727.6	25	97	3.88
C19	RH27	F1 CRR(m) $\times \operatorname{HOF}(\mathrm{f})$	5/1/2007	605.8	24	82	3.28
2	RH27	F1 CRR(m) x $\mathrm{HOF}(\mathrm{f})$	5/15/2007	682.5	25	103	4.12
48	RH28	F1 CRR(m) $\times \operatorname{HOF}(\mathrm{f})$	5/15/2007	682.5	25	110	4.4
C20	RH30	F1 CRR(m) x $\mathrm{HOF}(\mathrm{f})$	5/1/2007	605.8	24	76	3.04
37	RH30	F1 CRR(m) $\times \operatorname{HOF}(\mathrm{f})$	5/15/2007	682.5	25	89	3.56
49	RH1	F2 F1(m) x F1(f)	4/12/2007	740.5	25	97	3.88
C9	RH1	F2 F1(m) x F1(f)	4/12/2007	740.5	25	106	4.24
65	RH13	F2 F1(m) x F1(f)	4/30/2007	727	25	106	4.24
67	RH14	F2 F1(m) x F1(f)	4/16/2007	574.7	24	79	3.16
C6	RH14	F2 F1(m) \times F1(f)	4/16/2007	574.7	25	89	3.56
C3	RH3	F2 F1(m) x F1(f)	4/30/2007	767.4	25	96	3.84
7	RH3	F2 F1(m) \times F1(f)	5/14/2007	804.6	26	85	3.4
C13	RH5	F2 F1(m) x F1(f)	4/30/2007	767.4	25	100	4
4	RH5	F2 F1(m) \times F1(f)	5/14/2007	804.6	25	84	3.36
42	RH6	F2 F1(m) x F1(f)	4/30/2007	661.4	25	95	3.8
22	RH10	GR	4/30/2007	661.4	25	104	4.16
60	RH11	GR	4/6/2007	586.5	25	92	3.68
C14	RH11	GR	4/6/2007	586.5	25	115	4.6
23	RH12	GR	4/16/2007	525.5	25	90	3.6

Table 2.6. (continued). Batch weights and feed amounts for families on size 2 Rangen trout diet for M. cerebralis resistance experiment conducted at the Colorado Cooperative Fish and Wildlife Unit (COOP) wet lab in 2006-2007.

Tank \#	Group	Strain	Date on Size 2	DD @ Size 1	\# Fish	Grams	Feed 4\% (grams)
70	RH31	GR	$5 / 7 / 2007$	687.1	24	99	
75	RH32	GR	$4 / 23 / 2007$	530.5	25	108	
50	RH34	GR	$5 / 7 / 2007$	687.1	24	9.96	
C4	RH34	GR	$5 / 7 / 2007$	687.1	19	81	
58	RH8	GR	$4 / 6 / 2007$	586.5	25	103	3.96
C1	RH8	GR	$4 / 6 / 2007$	586.5	25	122	
10	RH9	GR	$4 / 16 / 2007$	525.5	25	78	4.12

Table 2.7. Batch weights and feed amounts for families on size 3 Rangen trout diet for M. cerebralis resistance experiment conducted at the Colorado Cooperative Fish and Wildlife Unit (COOP) wet lab in 2006-2007.

Tank \#	Group	Strain	Date on Size 3	DD @ Size 2	\# Fish	Grams	Feed 4\% (grams)
49	RH1	F2 F1(m) x F1(f)	$5 / 10 / 2007$	296.9	25	169	6.76
C9	RH1	F2 F1(m) x F1(f)	$5 / 10 / 2007$	296.9	25	181	
C6	RH14	F2 F1(m) x F1(f)	$5 / 14 / 2007$	298	25	178	
22	RH10	GR	$5 / 14 / 2007$	143.2	25	170	
C14	RH11	GR	$4 / 20 / 2007$	145.5	25	190	
60	RH11	GR	$5 / 4 / 2007$	294.4	25	234	6.8
23	RH12	GR	$5 / 14 / 2007$	279.1	25	208	
75	RH32	GR	$5 / 7 / 2007$	146.7	25	178	9.6
C1	RH8	GR	$4 / 20 / 2007$	145.5	25	193	
58	RH8	GR	$5 / 4 / 2007$	294.4	25	243	7.12
10	RH9	GR	$5 / 14 / 2007$	279.1	25	207	

Job No. 3: Whirling Disease Resistant Domestic Brood Stock Development and Evaluation

Job Objective: These experiments are focused on the performance of the Hofer (GR) strain and GR-Harrison strain as domestic production fish compared with other commonly used production fish.

Hatchery Performance Evaluations: Performance of a whirling disease resistant rainbow trout strain at two Myxobolus cerebralis-positive trout rearing facilities.

Abstract

A recently identified strain of rainbow trout with resistance to whirling disease (GR) was compared with Tasmanian and Bellaire rainbow trout strains in two separate trout rearing facilities to evaluate its performance and susceptibility to M. cerebralis infection under standard rearing conditions. Fish were brought to the facilities as either advanced fingerlings or as eyed eggs. Growth in the GR strain was significantly faster than in these other two domestic strains. Infection severity and prevalence in the GR strain was significantly lower than in the other two strains. These results demonstrate that the GR strain may be a useful replacement for more susceptible strains in facilities with a history of M. cerebralis infection.

INTRODUCTION

Whirling disease, caused by Myxobolus cerebralis is known to cause severe declines in wild rainbow trout populations, particularly in the Intermountain West (Nehring and Walker 1996, Vincent 1996). The parasite has become established in many fish culture facilities as well. For example, fish in 10 of Colorado's 14 state-operated trout rearing facilities were identified as infected with the parasite as recently as 1997 (Rich Kolecki, Colorado Division of Wildlife Chief of Hatcheries, personal communication). While infections from the parasite in hatchery situations do not typically result in heavy mortality, other detrimental effects such as compromised growth, performance, and conformation of the infected fish can occur. This can result in reduced marketability of the fish in commercial operations. Possible spread of the parasite from infected facilities can also be a damaging consequence. Spread of M. cerebralis through human transfer of infected fish is well documented, and considered to be one of the primary routes of dispersal (Hoffmann 1990, Modin 1998, Bartholomew and Reno 2002). Stocking of infected fish has been shown to increase the likelihood of M. cerebralis establishment (Schisler 2002), and greatly increase the ambient parasite load and infection severity in fish in the near vicinity and downstream of the stocked locations (Nehring 2006). In some states, regulations require that facilities harboring the parasite be depopulated and the parasite eliminated from the water supply or the facilities be closed.

Fish culture problems related to whirling disease infection can be alleviated in many cases through improved management practices to reduce or eliminate the parasite (Hoffman 1990). Solutions include using well water or water treatment to ensure parasite-free water supplies. Hatchery renovation, such as installation of concrete raceways or lining earthen ponds can also help eliminate habitat for the intermediate host, Tubifex tubifex. These practices can greatly reduce the incidence and prevalence of infection in some locations. In Colorado, hatchery improvements have eliminated the parasite from seven of the facilities previously identified as positive for the parasite. The parasite cannot be eliminated in some facilities because of reliance on infected water sources. In these situations, hatchery managers may be somewhat limited in their ability to reduce infection prevalence and severity.

Many previous studies have demonstrated that rainbow trout are quite vulnerable to whirling disease (Thompson et. al 1999, Hedrick et al. 1999, Vincent 2002), and until recently, all rainbow trout strains were considered to be very susceptible to the parasite. The discovery of whirling disease-resistant rainbow trout strains (Hedrick et al. 2003, Schisler et al. 2006, Wagner et al. 2006) has provided hope that effects of the parasite could be further alleviated through the use of these resistant strains in trout rearing facilities where M. cerebralis cannot be completely eradicated. The potential use of these strains as a method to reduce impacts due to M. cerebralis has generated considerable interest. Performance of the GR strain in typical fish culture situations in the United States has not yet been evaluated, and verification of the resistance of these strains to whirling disease under normal culture conditions is needed to determine if their use is a viable option. This study was designed to evaluate the growth and survival of the GR strain when compared with other standard domestic strains in representative hatchery situations.

METHODS

GR strain rainbow trout were evaluated at two separate state-operated M. cerebralis-positive trout rearing facilities. Both of these facilities rely on surface water, and have a history of infection in fish reared at these locations. Bellaire strain and Tasmanian strain rainbow trout are commonly used in Colorado as a catchable rainbow trout product for put-and-take and put-grow-and-take fisheries. In both of the trials described herein, the Bellaire and Tasmanian strain lots were reared through their normal production cycle, and matched with equal numbers of the GR strain to compare the growth and infectivity between the strains.

Chalk Cliffs Rearing Unit. - The Chalk Cliffs Rearing Unit is located in the upper Arkansas River drainage near Nathrop, Colorado, at an elevation of 2,438 meters. The facility was first identified as positive for M. cerebralis in March, 1988. The facility relies on surface water from Chalk Creek, and fish are reared in a series of raceways and earthen ponds. Warm springs in Chalk Creek result in an increased ambient temperature through the winter months (Figure 3.1). Myxospore counts in fish collected from the ponds on the facility during annual disease inspections have at times averaged over one million per fish. Improved management practices such as regular removal of moralities
and rotation of active ponds, with periodic drying and excavating, have helped reduce myxospore counts in recent years. However, because of its reliance on surface water, the Chalk Cliffs facility cannot be completely rid of the parasite.

Eyed eggs of the GR and Tasmanian strain rainbow trout were transported to the facility in December, 2005. The eggs hatched within a day of each other, and fry were reared together in $0.2 \times 3.5 \mathrm{~m}$ troughs in a hatchery building, fed with $38-53$ liters per minute surface water. At six months post-hatch, the fish were moved to $1 \times 50 \mathrm{~m}$ raceways with a flow of 4,920 liters per minute for further growth, then to a 0.47 hectare pond for final grow-out at 11 months post-hatch. Growth was measured periodically throughout the rearing period, starting at four months post-hatch, by using wet weights. Direct length measurements for statistical comparisons were made at nine and a half months and one year post-hatch.

Samples were collected to test for M. cerebralis infection and prevalence at three months post-hatch (1,002 degree-days ${ }^{\circ} \mathrm{C}$). Ten fish from each lot were collected and euthanized with tricaine methanesulfonate for histological analysis. Because of the size of the fish, they were fixed whole in Davidson's solution for 48 hours and then transferred to 70% ethanol. The bodies were embedded in paraffin, sectioned and stained with hematoxylin and eosin by standard procedures (Humason 1979). Two sections, one 30 microns deeper than the other, for each fish were evaluated for the presence of microscopic lesions due to M. cerebralis. The severity of microscopic lesions present in stained tissue sections were evaluated by the MacConnell-Baldwin scale using a scale from $0-5$ with 5 representing the most severe lesions and 0 indicating no abnormalities seen (Hedrick et al. 1999b, Baldwin et al. 2000).

At five months post-hatch (1,934 degree-days ${ }^{\circ} \mathrm{C}$), ten fish of each strain were again collected for histological analysis and 10 fish of each strain were collected for PTD analysis. Heads were removed from the sample fish. Whole heads designated for histological sectioning were preserved in Davidson's solution. Histological procedures were conducted as described above. If used for PTD analysis, heads were placed in individually labeled plastic bags, and then held at $-20^{\circ} \mathrm{C}$ until processing. The samples were then soaked in water at $45^{\circ} \mathrm{C}$ to soften the tissues, and then skeletal elements were separated from soft tissue by agitation in a wrist-action electric shaker using glass marbles as hammers. The samples were then decanted through disposable $190 \mu \mathrm{~m}$ calculi filters and rinse water was added back to the skeletal elements for purification and concentration by PTD (Markiw and Wolf 1974) and myxospore quantification (O’Grodnick 1975).

A third sample was collected during the facilities annual disease inspection, at nine months post-hatch (3,468 degree-days ${ }^{\circ} \mathrm{C}$). This collection occurred after the fish had been in the raceways for three and a half months (1,402 degree-days ${ }^{\circ} \mathrm{C}$). Thirty fish of each strain were collected for testing with PTD. These fish were processed for wholehead analysis as described previously.

Proc GLM in SAS system software was used to conduct tests in a general linear model framework for differences in growth and infection severity (dependent continuous variables) between strains (independent classification variable) for data collected during each sampling event. Wet weights over the course of the grow-out period were also compared using Proc GLM, in a simple regression analysis. This analysis used strain as an independent classification variable, days post-hatch as an independent continuous variable, and weight as a dependent continuous variable. Alpha was set at 0.05 for all tests of differences in growth and infection severity.

Poudre Rearing Unit - The Poudre Rearing Unit is located at an elevation of 2,347 meters above sea level in the Cache la Poudre Canyon, Northwest of Fort Collins, Colorado. The facility relies on surface water drawn from the Cache la Poudre River, which results in very slow growth at the facility during the winter months, when temperatures drop to near freezing from September through April (Figure 3.2). The facility has been positive for M. cerebralis since June of 1988. Fish produced at the Poudre Rearing Unit are typically brought to the facility in the late summer or fall of the year from the Bellvue Hatchery, near Laporte, Colorado, as 8 to $16-\mathrm{cm}$ fingerlings. Fish reared at the facility are used as a catchable product or as replacement brood fish.

GR and Bellaire strain rainbow trout were brought to the Poudre Rearing Unit in late July, 2005, as $15-\mathrm{cm}(43-45 \mathrm{~g}) ~ M$. cerebralis-negative fingerlings. Each lot consisted of 1,550 fish. The GR rainbow trout were seven months post-hatch, and the Bellaire rainbow trout were nine and a half months post-hatch. The age difference was necessary to match the sizes of the fish, due to the rapid early growth of the GR trout. Increase in size and age at exposure has been demonstrated to reduce infection severity in rainbow trout (Markiw 1992, Ryce et al. 2005). The GR rainbow trout were younger and therefore presumably more susceptible to infection as a function of age than the Bellaire rainbow trout when brought to the facility. The adipose fin was removed from GR rainbow trout two weeks prior to transport to ensure the fish could be easily identified when samples were collected.

The fish were held together in a single ($1.8 \mathrm{~m} \times 30.4 \mathrm{~m}$) raceway, with a flow of 3,218 to 3,407 liters per minute. Fish were fed ad libitum with demand feeders during the summer months, and a daily maintenance ration $0.5 \%-2 \%$ body weight during the winter months when temperatures were below $2^{\circ} \mathrm{C}$. Growth was monitored for one year at the facility.

Samples were collected for histological examinations and myxospore counts four months (970 degree-days ${ }^{\circ} \mathrm{C}$) after the fish were transported to the facility. Thirty fish of the GR and Bellaire rainbow trout were collected for the evaluations. The fish were euthanized with tricaine methanesulfonate, then weighed and measured. Heads were removed from the fish and split in two equal halves along the dorsal midline for histological analysis and pepsin-trypsin digest (PTD).

Subsequent samples of 30 fish of each strain were collected at eight months (1,039 degree-days ${ }^{\circ} \mathrm{C}$) and one year (1,617 degree-days ${ }^{\circ} \mathrm{C}$) after the fish were brought to
the facility. The entire head of each fish was collected and processed with PTD as described above in these samples. Average myxospore counts were compared between the two strains for each of the three sampling events. As with the data collected from the Chalk Cliffs evaluation, Proc GLM in SAS System software was used to test for differences in growth and infection severity for data collected during each sampling event, and alpha was set at 0.05 for all tests.

RESULTS

Chalk Cliffs Rearing Unit

Growth - At the Chalk Cliffs Rearing Unit, growth as measured by average weight in the GR strain was much faster than the Tasmanian strain (Figure 3.3). A simple linear regression model with days post-hatch as an independent continuous variable and strain as an independent classification variable resulted in a very good fit $\left(\mathrm{R}^{2}=0.8914\right)$. Both strain $\left(\mathrm{F}_{[1,19]}=23.70, P<0.0001\right)$ and days post-hatch ($\mathrm{F}_{[1,19]}=132.23, P<0.0001$) were found to be significant parameters in this model. More complicated models were explored, with similar results. Growth differences were also quite different when direct length measurements were compared. At nine and a half months post-hatch, average length of GR strain was $23.6 \mathrm{~cm}(\mathrm{n}=60, \mathrm{SD}=1.5)$, and $18.5 \mathrm{~cm}(\mathrm{n}=60, \mathrm{SD}=2.4)$ for the Tasmanian strain. At one year post-hatch, the GR strain averaged $28.4 \mathrm{~cm}(\mathrm{n}=50$, $\mathrm{SD}=2.8$), while the Tasmanian strain averaged $22.3 \mathrm{~cm}(\mathrm{n}=50, \mathrm{SD}=3.3)$. These differences were significant between the two strains during both the first (F [1, 118] $=199.26, P<0.0001$) and second ($\mathrm{F}_{[1,98]}=100.85, P<0.0001$) sampling events.
M. cerebralis Infection. - Statistical test results for comparison of the infection severity and prevalence in the two strains for all of the sampling events at the Chalk Cliffs Rearing Unit are provided in Table 3.1. Samples collected at three months post-hatch were identified as negative with histology in both the GR and Tasmanian rainbow trout. Samples collected at five months post-hatch also resulted in negative results for both histology and PTD in both strains. At nine and a half months post-hatch, infection prevalence in the GR strain was 73.3%, and prevalence in the Tasmanian strain was 96.7% Average whole-head myxospore count in the GR strain was $5,175(\mathrm{n}=30, \mathrm{SD}=$ $7,643)$, compared with $48,883(\mathrm{n}=30, \mathrm{SD}=50,825)$ in the Tasmanian strain. The differences in myxospore counts were highly significant ($\mathrm{F}_{[1,58]}=21.70 \mathrm{P}<0.0001$).

Poudre Rearing Unit

Growth - At the Poudre Rearing Unit, size in the GR rainbow trout was closely matched to the Bellaire rainbow trout for the first four months at the facility, with the GR rainbow trout averaging $24.3 \mathrm{~cm}(\mathrm{n}=30, \mathrm{SD}=2.1)$ versus $23.6 \mathrm{~cm}(\mathrm{n}=30, \mathrm{SD}=2.2)$ for the Bellaire rainbow trout. These differences were not significant (${ }_{[1,58]}=1.86, P=$ 0.1779). At eight months, growth in the GR strain was slightly better ($26.1 \mathrm{~cm}, \mathrm{n}=30$, $\mathrm{SD}=17.2$) than the Bellaire ($24.9 \mathrm{~cm}, \mathrm{n}=30, \mathrm{SD}=4.0$), but the difference was not
significant $\left(\mathrm{F}_{[1,58]}=2.31, P=0.1340\right)$. By one year on the facility, the GR rainbow trout ($35.0 \mathrm{~cm}, \mathrm{n}=30, \mathrm{SD}=4.3$) were significantly $\left(\mathrm{F}_{[1,58]}=19.07, P<0.0001\right)$ larger than the Bellaire strain ($30.4 \mathrm{~cm}, \mathrm{n}=30, \mathrm{SD}=3.7$).

Average weights of the two strains followed the same pattern as the lengths. After four months on the facility, the GR rainbow trout averaged $173.0 \mathrm{~g}(\mathrm{n}=30, \mathrm{SD}=$ 48.0), and the Bellaire rainbow trout averaged $171.0 \mathrm{~g}(\mathrm{n}=30$, $\mathrm{SD}=44.5)$. These differences were not significant ($\mathrm{F}_{[1,58]}=0.04, P=0.8373$). After eight months on the on the facility, the GR strain averaged $190.5 \mathrm{~g}(\mathrm{n}=30, \mathrm{SD}=40.1)$, while the Bellaire strain averaged $180.1 \mathrm{~g}(\mathrm{n}=30, \mathrm{SD}=60.5)$. Again, the weights were not significantly different $\left(\mathrm{F}_{[1,58]}=0.61, P=0.4370\right)$. When sampled at one year on the facility, the GR strain averaged $493.1 \mathrm{~g}(\mathrm{n}=30, \mathrm{SD}=132.9 \mathrm{~g})$, and the Bellaire strain averaged 375.4 g ($\mathrm{n}=30$, $\mathrm{SD}=122.1$). Despite being an equivalent size, but younger than the Bellaire rainbow trout at the beginning of the grow-out period, the GR strain were significantly heavier $\left(\mathrm{F}_{[1,58]}=12.74, P=0.0007\right)$ than the Bellaire strain.
M. cerebralis Infection - Testing for M. cerebralis resulted in identification of significantly higher prevalence and infection severity in the Bellaire rainbow trout than in the GR strain at the Poudre Rearing Unit (Figure 3.4). After four months, no infection was found in the head cartilage of any of the GR rainbow trout with histology, while lesions were found in 43.3% of the Bellaire rainbow trout. Histological scores in the Bellaire rainbow trout were low, with an average of 0.57 ($\mathrm{SD}=0.73$) on the McConnellBaldwin scale of $0-5$. No myxospores were found in any of the GR rainbow trout ($\mathrm{n}=$ 30) after four months. Prevalence of infection in the Bellaire strain as measured by PTD was $46.7 \%(\mathrm{n}=30)$, with an average (half-head) myxospores count of $3,657(\mathrm{SD}=$ 7,044).

Samples collected for PTD analysis after eight months resulted in only three of the GR rainbow trout identified as infected, with an average whole-head myxospore count of $3,440(\mathrm{n}=30, \mathrm{SD}=20,445)$. All of the Bellaire rainbow trout were found to be infected, with an average whole-head myxospore count of 84,993 ($\mathrm{n}=30$, $\mathrm{SD}=86,791$).

Samples collected after the two strains had been reared for one year on the facility identified none of the GR rainbow trout $(\mathrm{n}=30)$ as infected, while $90 \%(\mathrm{n}=30)$ of the Bellaire rainbow trout were identified as infected, with an average myxospore count of 361,099 (SD = 376,794) per fish.

Statistical test results for comparison of the infection severity and prevalence in the two strains for all of the sampling events at the Poudre Rearing Unit are provided in Table 3.2. The GR strain produced significantly ($P<0.05$) lower infection severity and prevalence for each of the sampling events and testing methods.

DISCUSSION

Growth of the GR strain rainbow trout was significantly better than both the Tasmanian strain rainbow trout at the Chalk Cliffs Rearing Unit and the Bellaire rainbow trout at the Poudre Rearing Unit. Growing conditions and temperature regimes were quite different at the two facilities, but the growth advantage of the GR strain was apparent at both locations. At the Chalk Cliffs Rearing Unit, where the two strains were reared under identical conditions from hatch, the GR strain reached stocking size of 23 cm , four months sooner than the Tasmanian strain. At the Poudre Rearing Unit, the GR and Tasmanian strain maintained relatively equal growth rates until the spring following transport to the facility, when accelerated growth occurred in the GR strain. This resulted in the GR strain fish outgrowing the Bellaire rainbow trout by the end of the evaluation, even though the Bellaire strain fish were two and a half months older than the GR strain fish at the beginning of the rearing period.

Infection prevalence and severity were significantly lower in the GR strain than both the Tasmanian and Bellaire strains by histological evaluation and myxospore counts in each of the sampling events in which the parasite was detected. Infection differences between the Tasmanian and the GR fish reared at the Chalk Cliffs facility were quite large, albeit not as pronounced by the end of the experiment as at the Poudre Rearing Unit. Initial exposure to M. cerebralis at Chalk Cliffs likely occurred after the fish were moved from the hatchery building to the raceways, at about six months post-hatch.

The large differences in infection severity between the Bellaire and GR strains at the Poudre Rearing Unit are underscored by the increasing myxospore count in the Bellaire rainbow trout throughout the evaluation period. High prevalence of infection in the Bellaire rainbow trout also demonstrates the high susceptibility of the strain to infection. Only three of the GR strain fish were identified as M. cerebralis-positive in the Poudre Rearing Unit evaluations. These were found during the sample collected at eight months after the beginning of the rearing period. These results indicate that the infection was quite low, but present at marginally detectable levels, in the GR strain fish. With much larger sample sizes, more infected GR fish would likely have been found at each of the sampling events.

Potential consequences of rearing and stocking a highly susceptible strain such as the Bellaire or Tasmanian rainbow trout are obvious. The parasite burden from these infected fish has the potential to greatly amplify the infection in both waters downstream from the facility if escapement occurs and in waters where the fish are stocked.

The results of these evaluations demonstrate that the GR strain has reduced infection prevalence and severity, as well as greater growth potential compared with other typical hatchery strains. The GR strain is a prospective replacement for these strains used for purely production purposes in areas where M. cerebralis is endemic, specifically where the parasite cannot be completely eradicated from water supplies.

Additional benefit could be realized from use of this or other resistant strains in facilities that do not harbor the parasite if fish are eventually stocked into waters where the parasite exists. Fish that are negative for the parasite, which are stocked into waters where M. cerebralis is endemic, can and do become infected after release (Nehring 2006). If these fish are not captured and removed before mature myxospores are developed, the end result can be an increase in parasite burden in the system. This reduces, and could completely negate, the benefits of stocking M. cerebralis-negative fish where the parasite already exists. A strain such as the GR, which does not develop high levels of infection after release into waters where M. cerebralis is endemic, would help reduce the overall parasite burden in the receiving water.

The GR strain has preformed favorably under the typical fish culture conditions described in these evaluations. Further evaluations are planned for performance of the GR strain as a hatchery product. Post-stocking performance is also an important consideration for hatchery-reared rainbow trout strains. Survival, harvest, and angler satisfaction of the strains in put-and-take fisheries are in progress.

Figure 3.1. Daily mean temperature, cumulative temperature units, and sample collections at the Chalk Cliffs Rearing Unit from January 2005 to January 2006.

Figure 3.2. Daily mean temperature, cumulative temperature units, and sample collections at the Poudre Rearing Unit from July 2005 to July 2006.

Figure 3.3. Growth rates for the GR and Tasmanian strain rainbow trout at the Chalk Cliffs Rearing Unit.

Figure 3.4. Myxospore counts for GR and Bellaire rainbow trout at four months, eight months, and one year at the Poudre Rearing Unit.

Table 3.1. Results of M. cerebralis infection evaluations at the Chalk Cliffs Rearing Unit. F-tests for comparisons of infection severity between the Tasmanian and GR strain rainbow trout are provided for each sample event.

	Tasmanian Rainbow Trout								GR Rainbow Trout	F-Test

Sample 2

(1,934 degree-days ${ }^{\circ} \mathrm{C}$) Histology Score
(whole-head)

Myxospore Count
(whole-head)

Sample 3

(3,468 degree-days ${ }^{\circ} \mathrm{C}$)
Myxospore Count
(whole-head)

Table 3.2. Results of M. cerebralis infection evaluations at the Poudre Rearing Unit. F-tests for comparisons of infection severity between the Bellaire and GR strain rainbow trout are provided for each sample event.

		Bellaire Rainbow Trout			GR Rainbow Trout		F-Test
	N	Infected (\%)	Severity	N	Infected (\%)	Severity	
Sample 1 (970 degree-days ${ }^{\circ} \mathrm{C}$) Histology Score (half-head)	30	43.3	0.57	30	0	0	$F_{[1,58]}=16.11, P=0.0002$
Myxospore Count (half-head)	30	46.7	3,657	30	0	0	$F_{[1,58]}=8.09, P=0.0061$
Sample 2 (1,039 degree-days ${ }^{\circ} \mathrm{C}$) Myxospore Count (whole-head)	30	100.0	84,993	30	10	3,440	$F_{[1,58]}=24.66, P<0.0001$
Sample 3 (1,617 degree-days ${ }^{\circ} \mathrm{C}$) Myxospore Count (whole-head)	30	90.0	361,099	30	0	0	$F_{[1,58]}=27.55, P<0.0001$

REFERENCES

Bartholomew, J. L., and P. W. Reno. 2002. The history and dissemination of whirling disease. Pages 3-24 in J. L. Bartholomew and J. C. Wilson, editors. Whirling disease: reviews and current topics. American Fisheries Society, Symposium 29, Bethesda, Maryland.

Hedrick, R. P., T. S. McDowell, G. D. Marty, G. T. Fosgate, K. Mukkatira, K. Myklebust, and M. El-Matbouli. 2003. Susceptibility of two strains of rainbow trout (one with suspected resistance to whirling disease) to Myxobolus cerebralis infection. Diseases of Aquatic Organisms 55: 37-44.

Hedrick, R. P., T. S. McDowell, K. Mukkataira, M. P. Georgiadis, and E. MacConnell. 1999. Susceptibility of selected inland salmonids to experimentally induced infections with Myxobolus cerebralis, the causative agent of whirling disease. Journal of Aquatic Animal Health 11: 330-339.

Hoffmann, G. L. 1990. Myxobolus cerebralis, a worldwide cause of salmonid whirling disease. Journal of Aquatic Animal Health 2: 30-37.

Markiw, M. E. 1992. Experimentally induced whirling disease I. Dose response of fry and adults of rainbow trout exposed to the triactinomyxon stage of Myxobolus cerebralis. Journal of Aquatic Animal Health 4: 40-43.

Modin, J. 1998. Whirling disease in California: A review of its history, distribution, and impacts, 1965-1997. Journal of Aquatic Animal Health 10:132-142.

Nehring, R. B. 2006. Colorado's cold water fisheries: whirling disease case histories and insights for risk management. Special Report Number 79. February 2006. Colorado Division of Wildlife, Denver, Colorado.

Nehring, R. B., and P. G. Walker. 1996. Whirling disease in the wild: the new reality in the intermountain west. Fisheries (Bethesda) 21: 28-32.

Ryce, E. K. N., A. V. Zale, E. MacConnell, and M. Nelson. 2005. Effects of fish age versus size on the development of whirling disease in rainbow trout. Diseases of Aquatic Organisms 63: 69-76.

Schisler, G. J., K. A. Myklebust, and R. P. Hedrick. 2006. Inheritance of Myxobolus cerebralis resistance among F1-generation crosses of whirling disease resistant and susceptible rainbow trout strains. Journal of Aquatic Animal Health 18:109115.

Schisler, G. J., and E. P. Bergersen. 2002. Evaluation of risk of high elevation Colorado waters to the establishment of Myxobolus cerebralis. Pages 33-41 in J. L. Bartholomew and J. C. Wilson, editors. Whirling disease: reviews and current topics. American Fisheries Society, Symposium 29, Bethesda, Maryland.

Thompson, K. G., R. B. Nehring, D. C. Bowden, and T. Wygant. 1999. Field exposures of seven species or subspecies of salmonids to Myxobolus cerebralis in the Colorado River, Middle Park, Colorado. Journal of Aquatic Animal Health 11: 312-329.

Vincent, E. R. 1996. Whirling disease and wild trout: the Montana experience. Fisheries (Bethesda) 21: 32-34

Vincent, E. R. 2002. Relative susceptibility of various salmonids to whirling disease with emphasis on rainbow and cutthroat trout. Pages 109-115 in J. L. Bartholomew and J. C. Wilson, editors. Whirling disease: reviews and current topics. American Fisheries Society, Symposium 29, Bethesda, Maryland.

Wagner, E. J., C. Wilson, R. Arndt, P. Goddard, M. Miller, A. Hodgson, R. Vincent, and K. Mock. Evaluation of disease resistance of the Fish Lake-DeSmet, Wounded Man, and Harrison Lake strains of rainbow trout exposed to Myxobolus cerebralis. Journal of Aquatic Animal Health 18: 128-135.

Field Performance Evaluations: Comparison of GR and Tasmanian strain rainbow trout as catchable plants in two put-and-take waters in Colorado.

INTRODUCTION

The GR strain rainbow trout has been identified as a strain that is highly resistant to M. cerebralis (Hedrick et al. 2003, Schisler et al. 2006). Other characteristics observed in laboratory experiments such as aggressive feeding behavior and rapid growth suggests that the strain may be useful as a catchable rainbow trout product. The GR rainbow trout appears to be a suitable replacement for other domestic strains used in Colorado from the standpoint of hatchery performance. However, performance of the GR strain compared to other standard domestic strains after it has been released to receiving waters has not yet been evaluated. In Colorado, approximately 3.2 million catchable-sized rainbow trout are produced per year for recreational angling. Catchable production fish raised for put-and-take use in Colorado are usually Tasmanian or Bellaire strain rainbow trout. A study was designed to compare the GR rainbow trout with another standard domestic strain, the Tasmanian rainbow trout, as a catchable product in typical put-and-take waters.

METHODS

Hatchery Rearing - GR and Tasmanian strain rainbow trout were reared in parallel from egg to catchable size at Chalk Cliffs Rearing Unit, a facility that is positive for M. cerebralis (See Previous Section; Hatchery Performance Evaluations: Performance of a whirling disease resistant rainbow trout strain at two Myxobolus cerebralis-positive trout rearing facilities). Eggs from both strains were hatched during the same week, and the conditions were identical for both strains throughout the rearing period of 16 months.

Stocking and Creel Surveys - Two front-range reservoirs, Flatiron and Pinewood reservoirs, were used as study locations for the catch and return to creel portion of the experiment. Both reservoirs are typical of coolwater reservoirs on the front range of Colorado in which fish are stocked for immediate recreational angling and harvest. These reservoirs, located northwest of Berthoud, Colorado, are typical high-use locations managed as put-and-take fisheries. Historical stocking rates have been from 15,00030,000 catchable rainbow trout per year in each of the reservoirs. Pinewood Reservoir has also been stocked with 200-800 tiger muskie (Esox lucius x Esox masquinongy) fingerlings per year.

Fish for this live-release experiment were reared at Chalk Cliffs Rearing Unit (See previous section, Hatchery Performance Evaluations: Performance of a whirling disease resistant rainbow trout strain at two Myxobolus cerebralis-positive trout rearing facilities). A reduced number of fish were stocked into the reservoirs for the purposes of this experiment. Fish of each strain were stocked per the standard stocking schedule for
the reservoirs every two to four weeks from the beginning of April until the end of June. Equal numbers of each strain were stocked into each reservoir during each stocking event, with the exception of the last plant (Table 3.3).

Table 3.3. GR and Tasmanian strain rainbow trout stocked from April through June, 2006, at Flatiron and Pinewood reservoirs.

	Flatiron Reservoir		Pinewood Reservoir	
	GR	Tasmanian	GR	Tasmanian
April 5, 2006	1000	1000	1000	1000
May 4, 2006	874	874	874	874
May 17, 2006	700	700	700	700
June 7, 2006	700	700	700	700
June 28, 2006	$\underline{861}$	861	612	362
Totals	4135	4135	3886	3636

Error! Not a valid link.One half of the fish stocked on each occasion were of the GR strain, and the other half were of the Tasmanian strain. The fish had been marked prior to stocking with fin clips to identify the fish by strain, GR fish with adipose clips, and Tasmanian stain with pelvic fin clips.

A creel schedule was created in which anglers were surveyed on both weekend days of every week, and two randomly chosen weekdays per week for the months of April through August. Two weeks at the end of March, 2006, were also included in the survey, prior to the official start of the study, to familiarize the creel clerks with the process. Angler counts were conducted five times daily throughout the daylight hours. Angler interviews were conducted between count times. Because the strains were differentially marked with fin clips, the creel clerk could easily distinguish between the two strains and catch estimates were made for both strains. During the angler interviews, additional questions were asked to determine if there was an angler preference between the strains. If there was a preference, the anglers were asked to describe which characteristics were most important in making that determination.

Supplemental Questionnaire Information - Supplemental questions were also asked to provide information on other unrelated topics. These were questions requested
by management or hatchery section personnel. One question was an inquiry as to the number of days the angler ice-fished in the previous year. This was asked because relatively little statewide data exists on the proportion of anglers in Colorado that participate in ice fishing. The results of this question were intended to augment data released in recent statewide angler preference survey " 2004 Colorado Angler Survey Summary Report-Aquatic Wildlife Section Special Report 06-1 March 2006", in which questions regarding ice fishing were inadvertently excluded.

A second question was asked to determine if there was a preference for fish flesh color in catchable rainbow trout. This was asked because some preliminary work conducted by the Colorado Division of Wildlife Hatchery Section with Roxanthinenhanced feed demonstrated that flesh color in catchable-sized trout could be changed from white to pink for nominal cost per pound (Matt Schehrer, Mt. Shavano hatchery manager, personal communication).

Holdover Evaluation - Boat-mounted electroshocking was conducted at the end of the summer fishing season to evaluate fish remaining of each strain. Proportions of fish remaining were compared between strains. Samples were collected from surviving fish for analysis with pepsin-trypsin digest to determine myxospore counts in holdover fish that would potentially contribute to amplification of infection in the reservoirs.

RESULTS

Hatchery Rearing - The GR strain rainbow trout developed an average myxospore count of $5,175(\mathrm{SD}=7,644)$ and the Tasmanian rainbow trout developing an average myxospore count of $48,883(\mathrm{SD}=50,825)$ after 10 months of growth at the Chalk Cliffs rearing facility. Growth in the GR strain rainbow trout was significantly faster than in the Tasmanian rainbow trout with the GR strain reaching an average length of 282 mm (11.1 inches) and the Tasmanians reaching an average length of 234 mm (9.2 inches) at the time the first fish were stocked from the facility.

Catch by Strain - Raw data indicated that a much higher percent of the GR rainbow trout were captured than the Tasmanian rainbow trout (Figures 3.5 and 3.6). This was especially true during the months that stocking occurred. After stocking was halted, numbers of fish captured of each strain were more closely matched. Total catch reported was 58.5% higher for the GR strain than the Tasmanian strain in Pinewood Reservoir. Total reported catch was 22.1% higher for the GR strain than the Tasmanian strain in Flatiron Reservoir.

Figure 3.5. Catch data from creel reports for number of rainbow trout caught by strain at Flatiron Reservoir.

Figure 3.6. Catch data from creel reports for number of rainbow trout caught by strain at Pinewood Reservoir.

Creel Survey Analysis - As an ancillary part of this project, a new creel survey program was developed based on the Colorado Division of Wildlife's DOS-based version of C-SAP. The original C-SAP program was last updated in February of 1990. The software has become increasingly difficult to run on newer computers. The data entry portion of the program is problematic and interpretation of the reports is complicated. Accurate creel information and efficient data entry were necessary for this particular project and the Colorado Division of Wildlife as a whole would benefit from an updated format of the program. As a result, efforts were initiated to create a Windows-based version of the original C-SAP program. All estimates used in the programming of the new C-SAP program are the same as in the prior version. Several releases of the program have been made over the last year, as improvements in the code and reports have been made. Data entered in the fall of 2006 into the program was run, for the purposes of this report, in the newest release, dated June 26, 2007. Options chosen for the output included selection of all available species, selection of "Statistical Method 1" and deselection of the finite population correction factor. Thorough documentation and user's manual information describing the available options and nuances of the program will be provided in the 2008 Federal Aid Report, when the final updates are expected to be complete. Report results for Flatiron Reservoir (water code 54851) and Pinewood Reservoir (water code 55928) are attached as Appendix I. Fish returns by strain were compared with numbers of fish stocked to determine the rate of return for each of the two strains at both reservoirs (Figure 3.7).

Figure 3.7. Proportion of fish returned to creel by strain for Flatiron and Pinewood reservoirs in 2006.

Angler Preference - Responses for each question were summarized separately. Not all questions were answered by all contacts, so number of respondents is not the same for each question. When asked about strain preference based on the fin clip marks, 22.6% of the 1,831 respondents chose the GR rainbow, compared with 3.2% that chose the Tasmanian rainbow. The remaining 74.2% had no preference. When asked about which characteristics they preferred with regard to the two strains, fighting ability was reported as the most important by 25.0% of 1,843 respondents. Only 1.8% reported that fish size was the most important characteristic. Catch rate was regarded as most important by 1.2% of the respondents, and appearance was most important to 0.3% of the respondents.

Figure 3.8. Angler preference by strain, as defined by fin clip, for Flatiron and Pinewood reservoirs in 2006.

Figure 3.9. Characteristics of fish contributing to angler preference at Flatiron and Pinewood reservoirs in 2006. The bar graph reflects all responses, including for anglers that had no preference. The pie chart describes preference (percent respondents) only for anglers that indicated that they had a preference.

Other Questionnaire Responses - Angler participation in ice-fishing among the respondents was low. Of the 1,880 respondents, only 113 (6.0\%) had ice-fished in the previous year. Average number of days fished per person that participated in ice-fishing was 5.06.

When asked which color flesh was preferred, the anglers overwhelmingly chose pink flesh as the color of choice. Of the 1,918 respondents, 1,221 preferred pink flesh, 407 preferred white, and 141 preferred red. Only 149 anglers had no preference.

Figure 3.10. Angler preference for trout flesh color, Flatiron and Pinewood reservoir questionnaire results, 2006.

Holdover Evaluation -Low numbers of both strains were found during the end-ofseason electrofishing samples. In Flatiron Reservoir, only two GR and three Tasmanian rainbow trout were collected. In Pinewood Reservoir, only six GR and 26 Tasmanian rainbow trout were collected. These front-range reservoirs are subject to intense fishing pressure that typically results in seasonal depletions of stocked fish. It is notable, however, that more Tasmanian rainbow trout remained in both reservoirs at the end of the experiment. These results support the creel survey data, which indicated that the GR rainbow trout were caught more readily than the Tasmanian strain. Myxospores found in the Tasmanian rainbow trout averaged $122,074(\mathrm{SD}=70,628)$ per fish, while those found in the GR rainbow trout averaged $210(\mathrm{SD}=595)$ per fish at the conclusion of the experiment. In reservoirs where large numbers of holdover fish or mortality occurs, contribution of myxospores to the system could be quite different for the two strains. This could occur due to both the higher holdover rate and higher average myxospore count in the Tasmanian rainbow trout.

DISCUSSION

Rapid growth, high return to creel and angler satisfaction, and low myxospore production all support the conclusion that the GR strain could be a useful replacement for other domestic strains used in Colorado for catchable rainbow trout production.
Additional evaluations are ongoing at other state trout rearing facilities, and additional creel survey work will be conducted to validate these conclusions. In this evaluation, the GR strain were larger on average than the Tasmanian strain fish when stocked. This was unavoidable because of the rapid growth of the GR strain in the rearing facilities prior to
stocking. While the anglers did not perceive fish size to be a major factor in preference between the two strains, it is possible that the larger size of the GR fish effected their perception of the strain.

Lower returns were observed with both strains in Pinewood Reservoir. Pinewood Reservoir is a little farther for fishermen to travel and the camping facilities are not as extensive, which could influence angler use. The outlet of Pinewood reservoir is also not conducive to retaining fish in the reservoir, with a vortex-like outlet structure having the potential to draw out fish. The principle difference between the two reservoirs, however, is the presence of large numbers of tiger muskies in Pinewood Reservoir. The impact of these fish on the catchable and fingerling plants in the reservoir is unknown, although predation on hatchery-produced trout would presumably be quite high. If the differences in return to creel between the two reservoirs were entirely due to tiger muskie predation, an average of 21.9% fewer trout would have been harvested due to their presence. Of course this assumes that the other factors described above are not influencing return positively or negatively, which is unlikely.

A follow-up experiment has been started at Pinewood and Flatiron reservoirs with the GR-Harrison $(75: 25)$ cross to determine if this slightly outbred strain will perform as well as the pure GR strain. Procedures are the same as in this experiment, and it will provide additional information on the relative return of these resistant rainbow trout compared to other domestic strains currently in use.

REFERENCES

Hedrick R. P., T. S. McDowell, G. D. Marty, G. T. Fosgate, K. Mukkatira, K. Myklebust, and M. El-Matbouli. 2003. Susceptibility of two strains of rainbow trout (one with suspected resistance to whirling disease) to Myxobolus cerebralis infection. Diseases of Aquatic Organisms 55: 37-44.

Schisler, G. J., Myklebust, K. A., and R. P. Hedrick. 2006. Inheritance of resistance to Myxobolus cerebralis among F1-generation crosses of whirling disease resistant and susceptible strains of rainbow trout. Journal of Aquatic Animal Health 18:109-115.

Schisler, G. J., and P. J. Schler. 2006. Performance of Hofer rainbow trout compared with other domestic stocks in Colorado trout rearing facilities. $12^{\text {th }}$ Annual Whirling Disease Symposium. February 9\&10, 2006. Denver, Colorado.

Job No. 4. Whirling Disease Resistant Wild Strain Brood Stock Development and Evaluation

Job Objective: These experiments are designed to develop and evaluate "wild" strain whirling disease resistant rainbow trout for reintroduction into areas where self-sustaining populations have been lost due to whirling disease.

INTRODUCTION

One of the highest priorities for whirling disease research is to ultimately reestablish wild rainbow trout populations in locations where they have been destroyed due to whirling disease. Some locations of particular interest are the Gunnison, South Platte, Yampa, Colorado, Rio Grande, and Fryingpan rivers. All of the stocking and sampling events were conducted by, or in cooperation with the respective area fisheries biologists. Dan Kowalski, area biologist for the Gunnison River, Jeff Spohn, area biologist for the South Platte River, and Billy Atkinson, the area biologist for the upper Colorado and Yampa rivers, were all instrumental in the collection of the data reported herein.

A few locations have been stocked with fingerling fish of various GR-cross varieties as pilot experiments, to determine if these strains would have any survival success. A small-scale survival experiment was conducted on an artificial stream channel on the South Platte River upstream of Spinney Mountain Reservoir in 2004 and 2005. Higher survival rates were observed among the F1 generation fish than either the pure GR or pure CRR rainbow trout strains in this experiment (Schisler 2006). Additional GR-Harrison crosses were stocked upstream of Antero Reservoir on the South Platte River in 2006.

A larger-scale experiment was initiated in 2004 on the Gunnison River. Results of that effort, from samples collected in the fall of 2005, indicated that the F1 strain survive as well as the pure CRR strain when stocked as four-inch fingerlings. Stocking efforts in that location continue through 2007.

GR-CRR fingerlings have been stocked into the Yampa River, and larger subcatchable sized GR-CRR fish have been stocked into the upper Colorado River, in an attempt to help re-establish wild rainbow trout populations there.

Additional F1 and B2 variety fish were stocked into locations where reestablishment of wild rainbow trout populations is desirable such as the Rio Grande and Fryingpan Rivers. The survival and performance of fish stocked in these locations are not being rigorously evaluated because of limited resources and personnel. However, any successful recruitment of wild rainbow trout in the future may be evaluated as to origin through the use of genetic markers that identify the offspring of the GR-strain fish. The following is a summary of live-release trials intended to re-establish wild rainbow trout populations.

METHODS

Gunnison River

2004-2005

F1 (GR-CRR) fish were hatched on March 14, 2004, at the FRH and marked with red visible implant elastomer (VIE) marks after reaching 76-102 mm (3-4 inches) in length. Pure CRR fish were hatched at the Colorado Division of Wildlife Rifle Falls Hatchery (RIF) on March 13, 2004, and similarly marked with green VIE marks. The two strains were given these marks to distinguish between the strains during population estimates. In this experiment, 10,104 pure CRR and 10,115 CRR-GR rainbow trout were stocked as 13.6 cm and 11.9 cm fingerlings, respectively into a $2,823 \mathrm{~m}$ section of the Gunnison Gorge at Ute Park on October 21, 2004. The fish were mixed together prior to stocking to prevent bias due to handling, then spread throughout the stream section using helicopter plants.

2005-2006

Growth, survival, and infection severity of the two strains planted in 2004 were evaluated from samples collected during the annual population estimate, conducted on September 27, 2005. Estimates were conducted using mark-recapture sampling with boat-mounted electroshocking gear. All rainbow trout were carefully examined for evidence of VIE marks. A subsample of fish with red (F1 fish) and green (pure CRR fish) VIE marks were collected for myxospore evaluation. Infection severity was evaluated by myxospore count analysis on seven pure CRR and 10 F1 fish.

Because of the low survival of the previous year's plant, larger fish were stocked in 2005 to potentially reduce predation. B2 [GR-CRR (25:75)] fish, hatched on April 10, 2005 at the Research hatchery, were marked with an adipose clip after reaching 7.6 10.0 cm (3-4 inches). Pure CRR hatched at RIF on March 28, 2005, were similarly given right pelvic clip. Stocking was conducted a second time at Ute Park using 5,000 pure CRR and 5,000 B2 fish on November 17, 2005. Fish were again mixed together immediately prior to stocking. As in 2004, fish were lowered into the stream section using a helicopter. However, during this stocking event, all of the fish were stocked into a holding cage and allowed to acclimate for 30-45 minutes prior to being released. All fish were released in the same location at the Ute Park station.

2006-2007

Population estimates were conducted again on September 26, 2006, using the same methods as in 2005. Particular attention was given to any rainbow trout captured to identify VIE marks from the 2004 plant, and fin clips from the 2005 plant. Many rainbow trout were captured that did not show any evidence of fin clips. This could have been due to either re-growth of fins, or some fish being stocked without receiving the appropriate clip. In order to determine the strain of the unmarked fish, a sample of these
fish were collected to be tested with the AFLP technique (see Appendix II). Additional fish with obvious fin clips were also collected. These fish were also tested for severity of M. cerebralis infection with myxospore counts obtained from the PTD technique.

On November 20, 2006, F1 fish were again stocked in the Ute Park section of the Gunnison River. This was to determine if the slightly larger F1 strain fish would perform better than the first (2004) plant of F1 fish. The pure CRR fish were not marked in this plant, while the F1 fish were again given an adipose clip. The fish were stocked in the same manner as those in 2005, with fish allowed to acclimate in holding cages before release.

South Platte River

In September, 2005, 800 each of pure GR and GR-CRR rainbow trout (10.0-13.0 cm ; 4-5 inches) were released into a newly created channel on the South Fork of the South Platte River, downstream of the town of Hartsel. This section had been stocked in August, 2005, with 2,250 McConaughy rainbow trout (10.0-13.0 cm; 4-5 inches). The GR rainbow trout were fin clipped with an adipose clip, the GR-CRR rainbows were given a right pelvic fin clip, and the McConaughy rainbow trout were given a left pelvic fin clip. A two-pass removal estimate was conducted on September 21, 2006 on a 100 meter (330 ft , Station 2) section, and a 78 meter (255 ft , Station 4) section using bankmounted electroshocking gear.

On March 29, 2006, a total of 13,759 fingerling rainbow trout of the GR-Harrison variety were stocked upstream of Antero Reservoir on the Knight-Imler State Wildlife Area. A two-pass removal estimate was conducted on September 21, 2006 on a 163 meter (536 ft) section using bank-mounted electroshocking gear. Estimated numbers of fish by species were calculated for general survey purposes using all fish captured. A separate estimate was calculated based only on fish marked for this study.

Yampa River

Two thousand of the B2 [GR-CRR (25:75)] variety were stocked into the Yampa River, downstream of Stagecoach Reservoir, on May 26, 2006. The fish were an average of 66 mm (2.6 inches) at time of stocking. Another group of 5,500 fish of the same size were stocked in Service Creek on May 31, 2006. On December 7, 2006, population estimates were conducted on an 86 meter (282 ft) section downstream of Stagecoach Reservoir. Length and weights were recorded to evaluate growth rates in this highly productive location. Fish samples from both locations, consisting of stocked fish and fish originating from natural reproduction, were collected for PTD analysis.

Upper Colorado River

This section of river is known to be heavily infected with M. cerebralis. Natural recruitment of rainbow trout has not occurred since the mid-1990's, and even brown trout fingerlings have exhibited severe signs of whirling disease in the reaches immediately
downstream of Windy Gap Reservoir. However, brown trout numbers have increased over the past decade, and fingerling plants of Colorado River Rainbow trout to augment the rainbow trout population have not had high survival.

Because of the concern about heavy brown trout predation on fingerling rainbow trout plants in the upper Colorado River, a decision was made to stock larger fish in this location. F1 strain (GR-CRR) were selected for this trial. Long term survival and growth evaluations were also considerations for this experiment, so fish were reared to 9.5 inches in length before stocking. Each fish was measured to the nearest 0.5 cm , and marked with an individually numbered fine filament Floy anchor tag. Half of the tags used were grey, and the other half were pink. This was done in an effort to determine if tag color had any effect on survival. Three thousand of these F1 fish were then stocked on June 2, 2006, in the upper Colorado River between Windy Gap Reservoir and the town of Hot Sulphur Springs, just upstream of Byers Canyon.

In November of 2006, a standard two-pass removal population estimate was conducted on a 305 meter (1000 ft) section of the upper Colorado River at the Chimney Rock station using bank-mounted electroshocking gear. Marked fish were estimated separately for the purposes of this experiment.

Other Locations

Fingerling fish of the F1 and B2 varieties were stocked into the Fryingpan River and the South Fork of the Rio Grande and in Beaver Creek, a tributary of the South Fork. These plants were made in an attempt to re-establish wild rainbow trout populations. A rigorous evaluation was not attempted at these locations.

RESULTS

Gunnison River

The 2005 population estimate indicated that survival of both groups of fish stocked in 2004 was relatively low, with only 12 of the pure CRR, and 24 of the F1 (GRCRR) fish being found in the $2,375 \mathrm{~m}$ sampling area. The sampling resulted in an estimate of $9.9 \pm 19.9 \mathrm{fish} / \mathrm{km}(16.0 \pm 32.0$ fish $/ \mathrm{mile})$ or an estimated 23.5 ± 47.5 fish of the CRR strain in the sampling reach. The estimates for F1 strain were 13.7 ± 14.3 fish $/ \mathrm{km}$ (22 ± 23 fish $/ \mathrm{mile}$) or an estimated 32.3 ± 33.4 fish in the sampling reach. The average total length for CRR fish was 24.8 cm , and 28.3 cm for the F1 fish.

All of the pure CRR fish were found to be infected, with an average spore count of $124,603(\mathrm{SD}=129,406)$. Only six of the 10 F 1 fish were found to be infected, with and average spore count of $4,055(\mathrm{SD}=8,336)$. Proc GLM in SAS system software was used to test for differences in myxospore counts between strains, which resulted in highly significant differences $\left(F_{[1,16]}=8.88, P=0.0094\right)$.

The population estimate conducted in 2006 resulted in an average of 1.24 fish \pm 0.0 fish $/ \mathrm{km}$ (2 ± 0 fish $/ \mathrm{mile}$) of the pure CRR strain remaining from the 2004 plant. Similarly small numbers of the F1 strain were found from the 2004 plant, with an average of $1.86 \pm 1.2 \mathrm{fish} / \mathrm{km}$ ($3 \pm 2 \mathrm{fish} / \mathrm{mile}$).

The loss of marks (regeneration of fin clips or poor marking) in fish stocked in 2005 resulted in a difficult evaluation of their survival. AFLP results correctly identified the one fish collected with a good pelvic fin clip as pure CRR fish (Table 4.1). The fish collected with good adipose clips were also correctly identified as GR-CRR crosses. Of the 10 fish with no marks from the 2005 plant that were collected and evaluated with AFLP, six were identified as pure CRR, and four were identified as GR-CRR crosses. Applying the 60:40 ratio to all of the fish captured in the size class of fish 170 to 280 mm that did not have visible marks (in addition to the estimate for the fish that actually retained their marks) resulted in a total estimate of 32.9 fish $/ \mathrm{km}$ ($53 \mathrm{fish} / \mathrm{mile}$) of the pure CRR strain and 21.8 fish $/ \mathrm{km}$ (35 fish/mile) of the B2 strain, originating from the 2005 plant.

An average of 83,929 myxospores $(\mathrm{SD}=149,719)$ was found in the pure CRR fish planted in 2005, including the fish identified as such by AFLP analysis. The average myxospore count among B2 fish, including those identified as GR-CRR crosses by AFLP, was 40,480 (SD = 48, 121).

Table 4.1. Myxospore counts and classification of age 1+ and 2+ rainbow trout based on fin clips and AFLP analysis in the Gunnison River, 2006.

SAMPLE	FIN CLIP	SPORE COUNT	STRAIN	AFLP CLASS
1				
2	Age 2+ fish	DNA sample only	Unknown	CRR
3	Pelvic	368,667	CRR	CRR
4	Adipose	58,372	B2	B2
5	Adipose	15,361	B2	B2
6	Adipose	52,228	B2	F2
7	Adipose	0	B2	B2
8	Adipose	175,117	B2	B2
9	Adipose	36,867	B2	F2
10	Adipose	0	B2	B2
11	Adipose	82,950	B2	B2
12	Adipose	0	B2	B2
13	Adipose	76,806	B2	F2
14	None	218,833	Unknown	CRR
15	None	0	Unknown	CRR
16	None	0	Unknown	CRR
17	None	21,883	Unknown	B2
18	None	0	Unknown	CRR
19	None	0	Unknown	CRR
20	None	35,350	Unknown	B2
21	None	11,783	Unknown	B2
22	None	0	Unknown	B2

Figure 4.1. Rainbow trout population estimates for the Gunnison River, Ute Park section, 2006.

Large numbers of GR-Harrison fish were found in the sampled section of the Knight-Imler SWA. During the two-pass removal estimate, 160 fish of the spring plant were captured in the first pass, and three in the second pass. This resulted in a population estimate of 998 fish per km (1,606 fish per mile). Samples collected for M. cerebralis testing resulted in identification of the parasite in only two of the 10 samples. Only one myxospore was found in one fish, and only five myxospores in one other fish. Average myxospore counts were 1,010 , collectively, for the ten fish.

Yampa River

Growth in the B2 fish stocked in the Yampa River and Service Creek during the May, 2006, plant was very good (Table 4.2). Myxospore counts in the B2 were higher than the wild rainbow trout downstream of Service Creek, which would have been exposed to the parasite for fewer total degree days and will likely develop higher spore counts as they experience more degree-days. The average myxospore counts in the B2 fish collected below Service Creek, at 133,825 myxospore per fish, were quite similar to those observed in B2 fish in the 2006 laboratory experiments, which averaged 125,168 per fish.

Table 4.2. Growth and myxospore counts for wild CRR and stocked B2 fish (stocked May, 2006) downstream of Stagecoach Reservoir and Service Creek in December, 2006.

Below Service Creek (Wild)- Lot 1				Below Stagecoach (Wild)- Lot 3			
Fish	Length (mm)	Weight (g)	Myxospores	Fish	Length (mm)	Weight (g)	Myxospores
1	91	9	0	1	114	18	0
2	71	4	114,467	2	110	18	0
3	89	8	0	3	106	14	0
4	76	5	245,767	4	115	19	13,467
5	59	3	228,933	5	111	16	0
6	80	6	74,067	6	148	32	0
7	83	7	99,317	Average	117	19	2,244
8	80	6	1,683				
9	67	3	6,733				
10	68	3	0				
11	62	2	141,400				
Average	75	5	82,942				

Below St	ecoach Re	voir	(G:CRR) - Lot 2	Below Ser	rvice Creek	B2 (GR:CR	R) - Lot 4
Fish	Length (mm)	Weight (g)	Myxospores		Length (mm)	Weight	Myxospores
1	159	52	0	1	167	47	23,567
2	160	58	0	2	180	68	244,083
3	186	98	0	3	191	85	1,683
4	134	32	0	4	158	45	5,050
5	164	56	0	5	165	58	40,400
6	185	85	0	6	205	104	600,950
7	204	118	0	7	197	95	244,083
8	200	110	0	8	181	65	82,483
9	170	76	0	9	212	100	35,350
10	140	37	0	10	226	145	60,600
11	201	95	0	Average	188	81	133,825
Average	173	74	0				

Upper Colorado River

Eighty-three fish from the June, 2006, stocking event were found during the November, 2006 population estimates. The fish had grown an average of 46 mm (1.8 inches), $\mathrm{SD}=10 \mathrm{~mm}$. The extrapolated estimate resulted in 272 fish per km (438 fish per mile) of the planted F1 fish. If it is assumed that the fish were distributed evenly along this 14 km section of river from Windy Gap Reservoir down to Byers Canyon, very high survival has occurred for the first six months post-stocking. Continued monitoring of these marked fish as well as wild rainbow trout reproduction and recruitment evaluation will occur over the next several years in the upper Colorado River.

DISCUSSION

These results are encouraging, and demonstrate that the F1 generation fish can survive at least as well as the pure CRR rainbow trout when planted as fingerlings. It also demonstrates that the myxospore counts produced after stocking are much lower in the F1 fish. The high survival and good post-stocking growth of the larger plant in the upper Colorado River is particularly encouraging, as it is quite possible that these fish are capable of surviving and reproducing in large numbers when they reach sexual maturity. High densities of brown trout continue to contribute to the poor survival of the stocked rainbow trout in the Gunnison River. Evaluations of the 2004 through 2006 plants will continue over the next several years, and genetic markers (See Appendix II) will be used to test any surviving fingerlings to identify any rainbow offspring with GR origins.

The myxospore counts in B2 fish released into the wild were similar to the results found in the laboratory experiments. It is unfortunate, but not unexpected, that fish with higher proportion of CRR to GR strain genetic background would be less resistant to infection from the parasite. This reinforces the notion that allowing natural selection of the resistant offspring of the F1 generation fish in the wild may be a more effective method to producing sufficient resistance and wild behaviors than creating these subsequent crosses artificially.

The laboratory results for the GR-Harrison strain, and early live-release outcome for this strain upstream of Antero Reservoir suggest that it could be very useful in locations that are positive for M. cerebralis. Their high resistance and excellent survival in this limited evaluation is encouraging and the strain will be more extensively evaluated in the future.

The resistant strain evaluations are still in the early stages with regard to reestablishment of wild rainbow trout populations. Work conducted in the next several years will be very important to determine which combinations of the GR and wild strains are effective for establishing self-sustaining rainbow trout populations.

Job No. 5. Technical Assistance

Job Objective: Provide information on impacts of fish disease on wild trout populations to fisheries managers and hatchery personnel of the Colorado Division of Wildlife and other resource agencies. Provide specialized information or assistance to the Hatchery Section. Contribute editorial assistance to various professional journals and other organizations upon request.

TECHNICAL ASSISTANCE MILESTONES

The work described in this Federal Aid Project is closely associated with work conducted by Ron Hedrick, Bernie May, and Melinda Baerwald at the University of California-Davis and Mark Miller of Utah State University to identify markers for WD resistance in select families of fish. The Colorado Division of Wildlife continues to work with these individuals, as well as with other agencies, such as the Utah Department of Natural Resources, the California Department of Fish and Game and the Montana Department of Fish, Wildlife, and Parks, to enhance and accelerate research on rainbow trout strains.

Major contributions in the area of technical assistance included various public and professional meeting presentations, including the following:

1) National American Fisheries Society meeting on September 12, 2006 in Lake Placid, New York.
2) Colorado Wildlife Commission Meeting in Steamboat Springs, Colorado, on August 10, 2006.
3) Continuing Education Biology Teachers group at Parvin Lake Research Station on July 10, 2006.
4) United States Geological Survey meeting in Fort Collins, Colorado on November 2, 2006.
5) $13^{\text {th }}$ Annual Whirling Disease Symposium: Resistance on Two Fronts! Denver, Colorado, February 12-13, 2006.
6) Colorado-Wyoming annual American Fisheries Society meeting, February 26March 1, 2007, in Fort Collins, Colorado.

This Federal Aid project has generated considerable public interest. Interviews and materials for popular articles were provided for several periodicals including Colorado Hunting and Fishing News, The Denver Post, The Scientist, Fly Rod and Reel, High Country Angler, and Southwest Fly Fishing. In addition, one professional journal article was published in 2006; "Schisler, G. J., K. A. Myklebust, and R. P. Hedrick. 2006. Inheritance of Myxobolus cerebralis resistance among F1-generation crosses of whirling disease resistant and susceptible rainbow trout strains. Journal of Aquatic Animal Health 18:109-115." (See Federal Aid Project Report F-393-R4).

Another technical assistance project that has generated interest among other State and Federal agencies is a small-scale experiment designed to evaluate the efficacy of quaternary ammonia compounds for the disinfection of equipment to prevent the distribution of New Zealand mud snails (Potamopyrgus antipodarum). A summary of this work; "Schisler, G. J., N. Vieira, and P. G. Walker. In Press. Application of household disinfectants to eliminate New Zealand mud snails from angling gear", has been submitted and accepted for publication in the North American Journal of Fisheries Management as a management brief. The recommendations for disinfection found in this publication have already been adopted by several agencies, including the United States Forest Service.

APPENDIX I.

C-SAP Creel Survey Results for Flatiron and Pinewood Reservoirs

June 26, 2007 Release
FISHERMAN-HOURS

Water 54851 Year 2006									Stat Method N/A
STRATA	BANK	Estimate	BOAT	OTHER	ALL	BANK	Std Error		
MARWD	413.2	0.0	0.0	413.2	102.9	0.0	0.0	102.9	
MARWE	195.2	0.0	0.0	195.2	55.0	0.0	0.0	55.0	
APRWE	780.7	0.0	0.0	780.7	99.7	0.0	0.0	99.7	
APRWD	877.8	5.7	0.0	883.5	205.2	3.3	0.0	204.9	
MAYWD	2027.8	84.3	25.9	2138.0	202.5	22.3	10.8	200.8	
MAYWE	2314.9	10.4	0.0	2325.3	0.0	0.0	0.0	0.0	
JUNWD	2313.4	13.7	0.0	2327.1	238.7	8.1	0.0	239.1	
JUNWE	2539.6	0.0	0.0	2539.6	0.0	0.0	0.0	0.0	
JULWE	2240.0	0.0	0.0	2240.0	0.0	0.0	0.0	0.0	
JULWD	2408.0	0.0	0.0	2408.0	306.8	0.0	0.0	306.8	
AUGWD	1939.2	0.0	0.0	1939.2	177.9	0.0	0.0	177.9	
AUGWE	1248.8	0.0	0.0	1248.8	0.0	0.0	0.0	0.0	
ALL	19298.6	114.1	25.9	19438.5	531.6	22.2	9.9	530.8	

TOTAL CATCH
Water 54851 Year 2006 Stat Method 1

		Estimate				Std Error		
STRATA	BANK	BOAT	OTHER	R ALL	BANK	BOAT	OTHER	ALL
MARWD	45.1	0.0	0.0	45.1	22.7	0.0	0.0	22.7
MARWE	11.6	0.0	0.0	11.6	5.8	0.0	0.0	5.8
APRWE	343.0	0.0	0.0	343.0	51.0	0.0	0.0	51.0
APRWD	738.2	0.0	0.0	738.2	214.8	0.0	0.0	214.8
MAYWD	2798.7	0.0	0.0	2798.7	208.9	0.0	0.0	208.9
MAYWE	1164.7	0.0	0.0	1164.7	0.0	0.0	0.0	0.0
JUNWD	1246.5	0.0	0.0	1246.5	306.6	0.0	0.0	306.6
JUNWE	784.7	0.0	0.0	784.7	0.0	0.0	0.0	0.0
JULWE	553.6	0.0	0.0	553.6	0.0	0.0	0.0	0.0
JULWD	460.7	0.0	0.0	460.7	105.3	0.0	0.0	105.3
AUGWD	800.4	0.0	0.0	800.4	64.2	0.0	0.0	64.2
AUGWE	322.2	0.0	0.0	322.2	0.0	0.0	0.0	0.0
ALL	9269.4	0.0	0.0	9269.4	429.7	0.0	0.0	429.7
TOTAL CONTACTS:		BANK $=1215.0$ B		BOAT $=0.0$	OTHER $=0.0$		ALL $=1215.0$	
TOTAL H	JRS:	BANK $=5939.0$ BOAT $=0.0$			OTHER $=0.0$		ALL $=5939$	

TOTAL CATCH/HR

Estimate					Std Error			
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.109	0.000	0.000	0.109	0.044	0.000	0.000	0.044
MARWE	0.059	0.000	0.000	0.059	0.015	0.000	0.000	0.015
APRWE	0.439	0.000	0.000	0.439	0.048	0.000	0.000	0.048
APRWD	0.841	0.000	0.000	0.836	0.109	0.000	0.000	0.109
MAYWD	1.380	0.000	0.000	1.309	0.184	0.000	0.000	0.170
MAYWE	0.503	0.000	0.000	0.501	0.000	0.000	0.000	0.000
JUNWD	0.539	0.000	0.000	0.536	0.087	0.000	0.000	0.087
JUNWE	0.309	0.000	0.000	0.309	0.000	0.000	0.000	0.000
JULWE	0.247	0.000	0.000	0.247	0.000	0.000	0.000	0.000
JULWD	0.191	0.000	0.000	0.191	0.020	0.000	0.000	0.020
AUGWD	0.413	0.000	0.000	0.413	0.033	0.000	0.000	0.033
AUGWE	0.258	0.000	0.000	0.258	0.000	0.000	0.000	0.000
ALL	0.480	0.000	0.000	0.477	0.000	0.000	0.000	0.000

CREEL CATCH
Water 54851 Year 2006 Stat Method 1

Estimate				Std Error				
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	30.0	0.0	0.0	30.0	15.9	0.0	0.0	15.9
MARWE	7.7	0.0	0.0	7.7	3.9	0.0	0.0	3.9
APRWE	104.9	0.0	0.0	104.9	15.2	0.0	0.0	15.2
APRWD	413.2	0.0	0.0	413.2	99.0	0.0	0.0	99.0
MAYWD	2322.7	0.0	0.0	2322.7	196.7	0.0	0.0	196.7
MAYWE	1086.8	0.0	0.0	1086.8	0.0	0.0	0.0	0.0
JUNWD	1168.3	0.0	0.0	1168.3	271.0	0.0	0.0	271.0
JUNWE	733.1	0.0	0.0	733.1	0.0	0.0	0.0	0.0
JULWE	537.6	0.0	0.0	537.6	0.0	0.0	0.0	0.0
JULWD	460.7	0.0	0.0	460.7	105.3	0.0	0.0	105.3
AUGWD	754.5	0.0	0.0	754.5	68.1	0.0	0.0	68.1
AUGWE	312.2	0.0	0.0	312.2	0.0	0.0	0.0	0.0
ALL	7931.7	0.0	0.0	7931.7	368.8	0.0	0.0	368.8

CREEL CATCH/HR
Water 54851 Year 2006 Stat Method 1

Estimate											Std Error	
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL				
MARWD	0.073	0.000	0.000	0.073	0.032	0.000	0.000	0.032				
MARWE	0.040	0.000	0.000	0.040	0.010	0.000	0.000	0.010				
APRWE	0.134	0.000	0.000	0.134	0.011	0.000	0.000	0.011				
APRWD	0.471	0.000	0.000	0.468	0.091	0.000	0.000	0.091				
MAYWD	1.145	0.000	0.000	1.086	0.151	0.000	0.000	0.140				
MAYWE	0.469	0.000	0.000	0.467	0.000	0.000	0.000	0.000				
JUNWD	0.505	0.000	0.000	0.502	0.074	0.000	0.000	0.074				
JUNWE	0.289	0.000	0.000	0.289	0.000	0.000	0.000	0.000				
JULWE	0.240	0.000	0.000	0.240	0.000	0.000	0.000	0.000				
JULWD	0.191	0.000	0.000	0.191	0.020	0.000	0.000	0.020				
AUGWD	0.389	0.000	0.000	0.389	0.032	0.000	0.000	0.032				
AUGWE	0.250	0.000	0.000	0.250	0.000	0.000	0.000	0.000				
ALL	0.411	0.000	0.000	0.408	0.000	0.000	0.000	0.000				

RETURNED CATCH

Estimate								
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT Error	OTHER	ALL
MARWD	15.2	0.0	0.0	15.2	8.0	0.0	0.0	8.0
MARWE	3.9	0.0	0.0	3.9	1.9	0.0	0.0	1.9
APRWE	238.1	0.0	0.0	238.1	41.4	0.0	0.0	41.4
APRWD	325.1	0.0	0.0	325.1	134.7	0.0	0.0	134.7
MAYWD	476.0	0.0	0.0	476.0	61.0	0.0	0.0	61.0
MAYWE	77.9	0.0	0.0	77.9	0.0	0.0	0.0	0.0
JUNWD	78.2	0.0	0.0	78.2	41.2	0.0	0.0	41.2
JUNWE	51.5	0.0	0.0	51.5	0.0	0.0	0.0	0.0
JULWE	16.1	0.0	0.0	16.1	0.0	0.0	0.0	0.0
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWD	45.9	0.0	0.0	45.9	14.9	0.0	0.0	14.9
AUGWE	10.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0
ALL	1337.7	0.0	0.0	1337.7	141.7	0.0	0.0	141.7

RETURNED CATCH/HR

Water 54851 Year 2006 Stat Method 1								
STRATA	BANK	Estimate	BOAT	OTHER	ALL	BANK	Std Error	
MARWD	0.037	0.000	0.000	0.037	0.015	0.000	0.000	0.015
MARWE	0.020	0.000	0.000	0.020	0.000	0.000	0.000	0.000
APRWE	0.305	0.000	0.000	0.305	0.045	0.000	0.000	0.045
APRWD	0.370	0.000	0.000	0.368	0.076	0.000	0.000	0.076
MAYWD	0.235	0.000	0.000	0.223	0.046	0.000	0.000	0.042
MAYWE	0.034	0.000	0.000	0.033	0.000	0.000	0.000	0.000
JUNWD	0.034	0.000	0.000	0.034	0.015	0.000	0.000	0.015
JUNWE	0.020	0.000	0.000	0.020	0.000	0.000	0.000	0.000
JULWE	0.007	0.000	0.000	0.007	0.000	0.000	0.000	0.000
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWD	0.024	0.000	0.000	0.024	0.008	0.000	0.000	0.008
AUGWE	0.008	0.000	0.000	0.008	0.000	0.000	0.000	0.000
ALL	0.069	0.000	0.000	0.069	0.000	0.000	0.000	0.000

FISHERMAN
Water 54851 Year 2006 Stat Method 1

Estimate												Std Error	
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL					
MARWD	108.8	0.0	0.0	108.8	24.7	0.0	0.0	24.7					
MARWE	68.1	0.0	0.0	68.1	20.3	0.0	0.0	20.3					
APRWE	115.4	0.0	0.0	115.4	9.3	0.0	0.0	9.3					
APRWD	215.1	0.0	0.0	215.1	37.8	0.0	0.0	37.8					
MAYWD	853.4	0.0	0.0	853.4	123.4	0.0	0.0	123.4					
MAYWE	358.2	0.0	0.0	358.2	0.0	0.0	0.0	0.0					
JUNWD	735.0	0.0	0.0	735.0	84.4	0.0	0.0	84.4					
JUNWE	594.9	0.0	0.0	594.9	0.0	0.0	0.0	0.0					
JULWE	432.4	0.0	0.0	432.4	0.0	0.0	0.0	0.0					
JULWD	562.1	0.0	0.0	562.1	96.0	0.0	0.0	96.0					
AUGWD	621.9	0.0	0.0	621.9	74.9	0.0	0.0	74.9					
AUGWE	245.5	0.0	0.0	245.5	0.0	0.0	0.0	0.0					
ALL	4910.7	0.0	0.0	4910.7	182.6	0.0	0.0	182.6					

Average Kept Catch Size (In INCH)

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	10.9	0.0	0.0	10.9	
MARWE	13.0	0.0	0.0	13.0	
APRWE	11.6	0.0	0.0	11.6	
APRWD	10.8	0.0	0.0	10.8	
MAYWD	12.0	0.0	0.0	12.0	
MAYWE	12.0	0.0	0.0	12.0	
JUNWD	12.2	0.0	0.0	12.2	
JUNWE	12.0	0.0	0.0	12.0	
JULWE	12.0	0.0	0.0	12.0	
JULWD	12.4	0.0	0.0	12.4	
AUGWD	11.2	0.0	0.0	11.2	
AUGWE	11.1	0.0	0.0	11.1	
ALL	11.9	0.0	0.0	11.9	

Average Kept Catch Size (In CM)
Water 54851 Year 2006 Stat Method 1

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	27.67	0	0	27.67	
MARWE	33.02	0	0	33.02	
APRWE	29.47	0	0	29.47	
APRWD	27.38	0	0	27.38	
MAYWD	30.58	0	0	30.58	
MAYWE	30.58	0	0	30.58	
JUNWD	30.94	0	0	30.94	
JUNWE	30.55	0	0	30.55	
JULWE	30.35	0	0	30.35	
JULWD	31.52	0	0	31.52	
AUGWD	28.52	0	0	28.52	
AUGWE	28.3	0	0	28.3	
ALL	30.23	0	0	30.23	

Average Completed Trip Length

Water 54851 Year 2006 Stat Method

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	2.1	0.0	0.0	2.1	
MARWE	1.7	0.0	0.0	1.7	
APRWE	3.0	0.0	0.0	3.0	
APRWD	2.9	0.0	0.0	2.9	
MAYWD	3.1	0.0	0.0	3.1	
MAYWE	2.5	0.0	0.0	2.5	
JUNWD	1.8	0.0	0.0	1.8	
JUNWE	2.4	0.0	0.0	2.4	
JULWE	2.9	0.0	0.0	2.9	
JULWD	2.2	0.0	0.0	2.2	
AUGWD	2.2	0.0	0.0	2.2	
AUGWE	3.2	0.0	0.0	3.2	
ALL	2.6	0.0	0.0	2.6	

SUMMARY	Water	54851	Year	2006 Stat Method		1		
	Estimate					Std Er		
REPORT	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
Fisherman Hours	19298.6	114.1	25.9	19438.5	531.6	22.2	9.9	530.8
Total Catch	9269.4	0.0	0.0	9269.4	429.7	0.0	0.0	429.7
Total Catch/hour	0.480	0.000	0.000	0.477	0.000	0.000	0.000	0.000
Kept catch	7931.7	0.0	0.0	7931.7	368.8	0.0	0.0	368.8
Kept Catch/hour	0.411	0.000	0.000	0.408	0.000	0.000	0.000	0.000
Returned Catch	1337.7	0.0	0.0	1337.7	141.7	0.0	0.0	141.7
Returned Catch/hour	0.069	0.000	0.000	0.069	0.000	0.000	0.000	0.000
Fisherman	4910.7	0.0	0.0	4910.7	182.6	0.0	0.0	182.6
Average Kept Catch Size (INCH)	11.9	0.0	0.0	11.9				
Average Kept Catch Size (CM)	30.23	0	0	30.23				
Average Trip Length	2.6	0.0	0.0	2.6				

Estimate				Std Error				
STRATA	BANK	BOAT	OTHER	R ALL	BANK	BOAT	OTHER	ALL
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWD	371.3	0.0	0.0	371.3	66.0	0.0	0.0	66.0
AUGWE	113.9	0.0	0.0	113.9	0.0	0.0	0.0	0.0
ALL	485.2	0.0	0.0	485.2	54.0	0.0	0.0	54.0
TOTAL CONTACTS:		BANK $=1215.0$		BOAT $=0.0$	OTHER $=0.0$		ALL $=1215.0$	
TOTAL H	JRS:	BANK $=5939.0$		BOAT $=0.0$	OTHER $=0.0$		ALL $=5939$	

TOTAL CATCH/HR SPC CUT
Water 54851Year 2006 Stat Method 1

Estimate						Std Error		
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	

CREEL CATCH SPC CUT
Water 54851Year 2006 Stat Method 1

Estimate				Std Error				
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWD	353.6	0.0	0.0	353.6	64.5	0.0	0.0	64.5
AUGWE	112.4	0.0	0.0	112.4	0.0	0.0	0.0	0.0
ALL	465.9	0.0	0.0	465.9	52.8	0.0	0.0	52.8

CREEL CATCH/HR SPC CUT
Water 54851 Year 2006 Stat Method 1

Estimate								Std Error
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWD	0.182	0.000	0.000	0.182	0.033	0.000	0.000	0.033
AUGWE	0.090	0.000	0.000	0.090	0.000	0.000	0.000	0.000
ALL	0.024	0.000	0.000	0.024	0.000	0.000	0.000	0.000

RETURNED CATCH SPC CUT
Water 54851 Year 2006 Stat Method 1

Estimate											Std Error	
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL				
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
APRWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
MAYWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
MAYWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
JUNWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
JULWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
AUGWD	17.7	0.0	0.0	17.7	7.5	0.0	0.0	7.5				
AUGWE	1.6	0.0	0.0	1.6	0.0	0.0	0.0	0.0				
ALL	19.3	0.0	0.0	19.3	5.9	0.0	0.0	5.9				

RETURNED CATCH/HR SPC CUT

Estimate					Std Error			
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWD	0.009	0.000	0.000	0.009	0.000	0.000	0.000	0.000
AUGWE	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000
ALL	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000

Average Kept Catch Size (In INCH) SPC CUT Water 54851 Year 2006 Stat Method 1

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	0.0	0.0	0.0	0.0	
MARWE	0.0	0.0	0.0	0.0	
APRWE	0.0	0.0	0.0	0.0	
APRWD	0.0	0.0	0.0	0.0	
MAYWD	0.0	0.0	0.0	0.0	
MAYWE	0.0	0.0	0.0	0.0	
JUNWD	0.0	0.0	0.0	0.0	
JUNWE	0.0	0.0	0.0	0.0	
JULWE	0.0	0.0	0.0	0.0	
JULWD	0.0	0.0	0.0	0.0	
AUGWD	11.1	0.0	0.0	11.1	
AUGWE	11.3	0.0	0.0	11.3	
ALL	11.1	0.0	0.0	11.1	

Average Kept Catch Size (In CM) SPC CUT Water 54851 Year 2006 Stat Method 1

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	0	0	0	0	
MARWE	0	0	0	0	
APRWE	0	0	0	0	
APRWD	0	0	0	0	
MAYWD	0	0	0	0	
MAYWE	0	0	0	0	
JUNWD	0	0	0	0	
JUNWE	0	0	0	0	
JULWE	0	0	0	0	
JULWD	0	0	0	0	
AUGWD	28.11	0	0	28.11	
AUGWE	28.6	0	0	28.6	
ALL	28.19	0	0	28.19	

Average Completed Trip Length

Estimate						
STRATA	BANK	BOAT	OTHER	ALL		
MARWD	2.1	0.0	0.0	2.1		
MARWE	1.7	0.0	0.0	1.7		
APRWE	3.0	0.0	0.0	3.0		
APRWD	2.9	0.0	0.0	2.9		
MAYWD	3.1	0.0	0.0	3.1		
MAYWE	2.5	0.0	0.0	2.5		
JUNWD	1.8	0.0	0.0	1.8		
JUNWE	2.4	0.0	0.0	2.4		
JULWE	2.9	0.0	0.0	2.9		
JULWD	2.2	0.0	0.0	2.2		
AUGWD	2.2	0.0	0.0	2.2		
AUGWE	3.2	0.0	0.0	3.2		
ALL	2.6	0.0	0.0	2.6		

SUMMARY SPC CUT	Water	54851	Year	2006 Stat Method		1		
	Estimate					Std Error		
REPORT	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
Total Catch	485.2	0.0	0.0	485.2	54.0	0.0	0.0	54.0
Total Catch/hour	0.025	0.000	0.000	0.025	0.000	0.000	0.000	0.000
Kept catch	465.9	0.0	0.0	465.9	52.8	0.0	0.0	52.8
Kept Catch/hour	0.024	0.000	0.000	0.024	0.000	0.000	0.000	0.000
Returned Catch	19.3	0.0	0.0	19.3	5.9	0.0	0.0	5.9
Returned Catch/hour	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000
Average Kept Catch Size (INCH)	11.1	0.0	0.0	11.1				
Average Kept Catch Size (CM)	28.22	0	0	28.22				
Average Trip Length	2.6	0.0	0.0	2.6				

TOTAL CATCH SPC KOK
Water 54851 Year 2006 Stat Method 1

Estimate								
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWE	1.7	0.0	0.0	1.7	0.0	0.0	0.0	0.0
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ALL	1.7	0.0	0.0	1.7	0.8	0.0	0.0	0.8
TOTAL CONTACTS:	BANK $=1215.0$	BOAT $=0.0$	OTHER =0.0	ALL =				
TOTAL HOURS:	BANK $=5939.0$	BOAT $=0.0$	OTHER $=0.0$	ALL =	5939.0			

TOTAL CATCH/HR SPC KOK
Water 54851 Year 2006 Stat Method 1

Estimate										Std Error				
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL						
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
MAYWE	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000						
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
JUNWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
JULWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
AUGWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
AUGWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
ALL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						

CREEL CATCH SPC KOK

Water 54851 Year 2006 Stat Method 1

Estimate								
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWE	1.7	0.0	0.0	1.7	0.0	0.0	0.0	0.0
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ALL	1.7	0.0	0.0	1.7	0.8	0.0	0.0	0.8

CREEL CATCH/HR SPC KOK
Water 54851 Year 2006 Stat Method 1

Estimate					Std Error			
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWE	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ALL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

RETURNED CATCH SPC KOK
Water 54851 Year 2006 Stat Method 1

Estimate								
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT Error	OTHER	ALL
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ALL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

RETURNED CATCH/HR SPC KOK

Wstimate				Water 54851 Year 2006				
Stat Method 1								
STRATA	BANK	BOAT	OTHER	ALL	BANK	Std Error		
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ALL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Average Kept Catch Size (In INCH) SPC KOK Water 54851 Year 2006 Stat Method 1

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	0.0	0.0	0.0	0.0	
MARWE	0.0	0.0	0.0	0.0	
APRWE	0.0	0.0	0.0	0.0	
APRWD	0.0	0.0	0.0	0.0	
MAYWD	0.0	0.0	0.0	0.0	
MAYWE	12.5	0.0	0.0	12.5	
JUNWD	0.0	0.0	0.0	0.0	
JUNWE	0.0	0.0	0.0	0.0	
JULWE	0.0	0.0	0.0	0.0	
JULWD	0.0	0.0	0.0	0.0	
AUGWD	0.0	0.0	0.0	0.0	
AUGWE	0.0	0.0	0.0	0.0	
ALL	12.5	0.0	0.0	12.5	

Average Kept Catch Size (In CM) SPC KOK Water 54851Year 2006 Stat Method 1

Estimate						
STRATA	BANK	BOAT	OTHER	ALL		
MARWD	0	0	0	0		
MARWE	0	0	0	0		
APRWE	0	0	0	0		
APRWD	0	0	0	0		
MAYWD	0	0	0	0		
MAYWE	31.75	0	0	31.75		
JUNWD	0	0	0	0		
JUNWE	0	0	0	0		
JULWE	0	0	0	0		
JULWD	0	0	0	0		
AUGWD	0	0	0	0		
AUGWE	0	0	0	0		
ALL	31.75	0	0	31.75		

Average Completed Trip Length

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	2.1	0.0	0.0	2.1	
MARWE	1.7	0.0	0.0	1.7	
APRWE	3.0	0.0	0.0	3.0	
APRWD	2.9	0.0	0.0	2.9	
MAYWD	3.1	0.0	0.0	3.1	
MAYWE	2.5	0.0	0.0	2.5	
JUNWD	1.8	0.0	0.0	1.8	
JUNWE	2.4	0.0	0.0	2.4	
JULWE	2.9	0.0	0.0	2.9	
JULWD	2.2	0.0	0.0	2.2	
AUGWD	2.2	0.0	0.0	2.2	
AUGWE	3.2	0.0	0.0	3.2	
ALL	2.6	0.0	0.0	2.6	

TOTAL CATCH SPC RBT
Water 54851 Year 2006 Stat Method 1

		Estimate				Std Er		
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	23.7	0.0	0.0	23.7	8.6	0.0	0.0	8.6
MARWE	11.6	0.0	0.0	11.6	5.8	0.0	0.0	5.8
APRWE	343.0	0.0	0.0	343.0	51.0	0.0	0.0	51.0
APRWD	738.2	0.0	0.0	738.2	214.8	0.0	0.0	214.8
MAYWD	2798.7	0.0	0.0	2798.7	208.9	0.0	0.0	208.9
MAYWE	1163.0	0.0	0.0	1163.0	0.0	0.0	0.0	0.0
JUNWD	1246.5	0.0	0.0	1246.5	306.6	0.0	0.0	306.6
JUNWE	784.7	0.0	0.0	784.7	0.0	0.0	0.0	0.0
JULWE	553.6	0.0	0.0	553.6	0.0	0.0	0.0	0.0
JULWD	460.7	0.0	0.0	460.7	105.3	0.0	0.0	105.3
AUGWD	429.0	0.0	0.0	429.0	72.3	0.0	0.0	72.3
AUGWE	208.2	0.0	0.0	208.2	0.0	0.0	0.0	0.0
ALL	8761.0	0.0	0.0	8761.0	430.3	0.0	0.0	430.3
TOTAL CONTACTS:		BANK $=1215.0$		BOAT $=0.0$	OTHER $=0.0$		ALL $=1215.0$	
TOTAL H	URS:	BANK $=5939.0 \quad$ BOAT $=0.0$			OTHER $=0.0$		ALL $=5939$	

TOTAL CATCH/HR SPC RBT
Water 54851Year 2006 Stat Method 1

Estimate					Std Error			
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.057	0.000	0.000	0.057	0.011	0.000	0.000	0.011
MARWE	0.059	0.000	0.000	0.059	0.015	0.000	0.000	0.015
APRWE	0.439	0.000	0.000	0.439	0.048	0.000	0.000	0.048
APRWD	0.841	0.000	0.000	0.836	0.109	0.000	0.000	0.109
MAYWD	1.380	0.000	0.000	1.309	0.184	0.000	0.000	0.170
MAYWE	0.502	0.000	0.000	0.500	0.000	0.000	0.000	0.000
JUNWD	0.539	0.000	0.000	0.536	0.087	0.000	0.000	0.087
JUNWE	0.309	0.000	0.000	0.309	0.000	0.000	0.000	0.000
JULWE	0.247	0.000	0.000	0.247	0.000	0.000	0.000	0.000
JULWD	0.191	0.000	0.000	0.191	0.020	0.000	0.000	0.020
AUGWD	0.221	0.000	0.000	0.221	0.037	0.000	0.000	0.037
AUGWE	0.167	0.000	0.000	0.167	0.000	0.000	0.000	0.000
ALL	0.454	0.000	0.000	0.451	0.000	0.000	0.000	0.000

CREEL CATCH SPC RBT
Water 54851 Year 2006 Stat Method 1

Estimate										Std Error				
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL						
MARWD	19.2	0.0	0.0	19.2	9.1	0.0	0.0	9.1						
MARWE	7.7	0.0	0.0	7.7	3.9	0.0	0.0	3.9						
APRWE	104.9	0.0	0.0	104.9	15.2	0.0	0.0	15.2						
APRWD	413.2	0.0	0.0	413.2	99.0	0.0	0.0	99.0						
MAYWD	2322.7	0.0	0.0	2322.7	196.7	0.0	0.0	196.7						
MAYWE	1085.2	0.0	0.0	1085.2	0.0	0.0	0.0	0.0						
JUNWD	1168.3	0.0	0.0	1168.3	271.0	0.0	0.0	271.0						
JUNWE	733.1	0.0	0.0	733.1	0.0	0.0	0.0	0.0						
JULWE	537.6	0.0	0.0	537.6	0.0	0.0	0.0	0.0						
JULWD	460.7	0.0	0.0	460.7	105.3	0.0	0.0	105.3						
AUGWD	400.9	0.0	0.0	400.9	68.3	0.0	0.0	68.3						
AUGWE	199.8	0.0	0.0	199.8	0.0	0.0	0.0	0.0						
ALL	7453.3	0.0	0.0	7453.3	368.7	0.0	0.0	368.7						

CREEL CATCH/HR SPC RBT
Water 54851Year 2006 Stat Method 1

Estimate						Std Error		
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.047	0.000	0.000	0.047	0.017	0.000	0.000	0.017
MARWE	0.040	0.000	0.000	0.040	0.010	0.000	0.000	0.010
APRWE	0.134	0.000	0.000	0.134	0.011	0.000	0.000	0.011
APRWD	0.471	0.000	0.000	0.468	0.091	0.000	0.000	0.091
MAYWWD	1.145	0.000	0.000	1.086	0.151	0.000	0.000	0.140
MAYWE	0.469	0.000	0.000	0.467	0.000	0.000	0.000	0.000
JUNWD	0.505	0.000	0.000	0.502	0.074	0.000	0.000	0.0074
JUNWE	0.289	0.000	0.000	0.289	000	0.000	0.000	0.000
JULWE	0.240	0.000	0.000	0.240	0.000	0.000	0.000	0.000
JULWD	0.191	0.000	0.000	0.191	0.020	0.000	0.000	0.020
AUGWD	0.207	0.000	0.000	0.207	0.034	0.000	0.000	0.034
AUGWE	0.160	0.000	0.000	0.160	0.000	0.000	0.000	0.000
ALL	0.386	0.000	0.000	0.383	0.000	0.000	0.000	0.000

RETURNED CATCH SPC RBT

Water 54851 Year 2006 Stat Method 1

Estimate										Std Error					
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL							
MARWD	4.4	0.0	0.0	4.4	3.3	0.0	0.0	3.3							
MARWE	3.9	0.0	0.0	3.9	1.9	0.0	0.0	1.9							
APRWE	238.1	0.0	0.0	238.1	41.4	0.0	0.0	41.4							
APRWD	325.1	0.0	0.0	325.1	134.7	0.0	0.0	134.7							
MAYWD	476.0	0.0	0.0	476.0	61.0	0.0	0.0	61.0							
MAYWE	77.9	0.0	0.0	77.9	0.0	0.0	0.0	0.0							
JUNWD	78.2	0.0	0.0	78.2	41.2	0.0	0.0	41.2							
JUNWE	51.5	0.0	0.0	51.5	0.0	0.0	0.0	0.0							
JULWE	16.1	0.0	0.0	16.1	0.0	0.0	0.0	0.0							
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
AUGWD	28.1	0.0	0.0	28.1	13.3	0.0	0.0	13.3							
AUGWE	8.4	0.0	0.0	8.4	0.0	0.0	0.0	0.0							
ALL	1307.7	0.0	0.0	1307.7	141.5	0.0	0.0	141.5							

RETURNED CATCH/HR SPC RBT

Estimate										Std Error					
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL							
MARWD	0.011	0.000	0.000	0.011	0.000	0.000	0.000	0.000							
MARWE	0.020	0.000	0.000	0.020	0.000	0.000	0.000	0.000							
APRWE	0.305	0.000	0.000	0.305	0.045	0.000	0.000	0.045							
APRWD	0.370	0.000	0.000	0.368	0.076	0.000	0.000	0.076							
MAYWD	0.235	0.000	0.000	0.223	0.046	0.000	0.000	0.042							
MAYWE	0.034	0.000	0.000	0.033	0.000	0.000	0.000	0.000							
JUNWD	0.034	0.000	0.000	0.034	0.015	0.000	0.000	0.015							
JUNWE	0.020	0.000	0.000	0.020	0.000	0.000	0.000	0.000							
JULWE	0.007	0.000	0.000	0.007	0.000	0.000	0.000	0.000							
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000							
AUGWD	0.015	0.000	0.000	0.015	0.007	0.000	0.000	0.007							
AUGWE	0.007	0.000	0.000	0.007	0.000	0.000	0.000	0.000							
ALL	0.068	0.000	0.000	0.067	0.000	0.000	0.000	0.000							

Average Kept Catch Size (In INCH) SPC RBT Water 54851 Year 2006 Stat Method 1

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	11.7	0.0	0.0	11.7	
MARWE	13.0	0.0	0.0	13.0	
APRWE	11.6	0.0	0.0	11.6	
APRWD	10.8	0.0	0.0	10.8	
MAYWD	12.0	0.0	0.0	12.0	
MAYWE	12.0	0.0	0.0	12.0	
JUNWD	12.2	0.0	0.0	12.2	
JUNWE	12.0	0.0	0.0	12.0	
JULWE	12.0	0.0	0.0	12.0	
JULWD	12.4	0.0	0.0	12.4	
AUGWD	11.4	0.0	0.0	11.4	
AUGWE	11.1	0.0	0.0	11.1	
ALL	11.9	0.0	0.0	11.9	

Average Kept Catch Size (In CM) SPC RBT Water54851Year 2006 Stat Method 1

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	29.65	0	0	29.65	
MARWE	33.02	0	0	33.02	
APRWE	29.47	0	0	29.47	
APRWD	27.38	0	0	27.38	
MAYWD	30.58	0	0	30.58	
MAYWE	30.58	0	0	30.58	
JUNWD	30.94	0	0	30.94	
JUNWE	30.55	0	0	30.55	
JULWE	30.35	0	0	30.35	
JULWD	31.52	0	0	31.52	
AUGWD	28.88	0	0	28.88	
AUGWE	28.14	0	0	28.14	
ALL	30.23	0	0	30.23	

Average Completed Trip Length

Water 54851Year 2006 Stat Method

Estimate						
STRATA	BANK	BOAT	OTHER	ALL		
MARWD	2.1	0.0	0.0	2.1		
MARWE	1.7	0.0	0.0	1.7		
APRWE	3.0	0.0	0.0	3.0		
APRWD	2.9	0.0	0.0	2.9		
MAYWD	3.1	0.0	0.0	3.1		
MAYWE	2.5	0.0	0.0	2.5		
JUNWD	1.8	0.0	0.0	1.8		
JUNWE	2.4	0.0	0.0	2.4		
JULWE	2.9	0.0	0.0	2.9		
JULWD	2.2	0.0	0.0	2.2		
AUGWD	2.2	0.0	0.0	2.2		
AUGWE	3.2	0.0	0.0	3.2		
ALL	2.6	0.0	0.0	2.6		

SUMMARY SPC RBT	Water	54851	Year	2006	Stat Method	1		
	Estimate					Std Err		
REPORT	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
Total Catch	8761.0	0.0	0.0	8761.0	430.3	0.0	0.0	430.3
Total Catch/hour	0.454	0.000	0.000	0.451	0.000	0.000	0.000	0.000
Kept catch	7453.3	0.0	0.0	7453.3	368.7	0.0	0.0	368.7
Kept Catch/hour	0.386	0.000	0.000	0.383	0.000	0.000	0.000	0.000
Returned Catch	1307.7	0.0	0.0	1307.7	141.5	0.0	0.0	141.5
Returned Catch/hour	0.068	0.000	0.000	0.067	0.000	0.000	0.000	0.000
Average Kept Catch Size (INCH)	11.9	0.0	0.0	11.9				
Average Kept Catch Size (CM)	30.32	0	0	30.32				
Average Trip Length	2.6	0.0	0.0	2.6				

FISHERMAN-HOURS			Water 55928Year 2006 Stat Method N/A					
Estimate				Std Error				
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	792.7	0.0	0.0	792.7	419.8	0.0	0.0	419.8
MARWE	457.6	0.0	0.0	457.6	239.0	0.0	0.0	239.0
APRWE	1037.7	129.1	17.1	1184.0	264.9	56.4	11.4	311.5
APRWD	654.0	96.0	0.0	750.0	134.8	40.6	0.0	154.7
MAYWD	2392.0	445.8	87.0	2924.8	831.9	191.2	50.6	988.4
MAYWE	3312.4	338.0	83.2	3733.6	310.4	77.7	33.4	333.1
JUNWD	2128.6	650.2	61.6	2840.4	217.1	119.8	39.8	295.7
JUNWE	3052.0	660.8	210.0	3922.8	434.4	78.3	37.4	516.5
JULWE	1982.4	616.7	112.0	2711.1	265.4	90.6	44.8	334.7
JULWD	1360.0	360.0	64.0	1784.0	145.5	169.3	41.3	173.9
AUGWD	1667.2	694.1	128.8	2490.1	393.3	134.0	70.4	390.3
AUGWE	1464.4	644.0	92.4	2200.8	226.9	84.4	43.5	267.2
ALL	20301.1	4634.7	856.1	25792.0	1282.1	360.3	131.7	1470.6

TOTAL CATCH
Water 55928Year 2006 Stat Method 1

Estimate											Std Error
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL			
MARWD	384.8	0.0	0.0	384.8	236.3	0.0	0.0	236.3			
MARWE	75.6	0.0	0.0	75.6	55.4	0.0	0.0	55.4			
APRWE	337.5	0.0	0.0	337.5	114.2	0.0	0.0	114.2			
APRWD	387.7	0.0	0.0	387.7	184.8	0.0	0.0	184.8			
MAYWD	1419.5	160.4	1.2	1581.2	350.1	133.8	1.2	434.8			
MAYWE	1236.7	122.5	0.0	1359.1	294.3	40.5	0.0	297.1			
JUNWD	877.5	387.0	0.0	1264.5	235.0	174.9	0.0	519.9			
JUNWE	584.9	126.0	107.3	818.2	108.5	40.8	36.3	218.6			
JULWE	302.0	42.1	0.0	344.0	63.8	33.7	0.0	88.5			
JULWD	161.6	0.0	0.0	161.6	44.1	0.0	0.0	44.1			
AUGWD	428.5	183.1	18.4	630.0	137.3	97.8	18.4	177.4			
AUGWE	290.5	119.4	0.0	409.9	66.1	64.9	0.0	117.4			
ALL	6486.8	1140.4	127.0	7754.2	641.5	258.3	40.7	869.8			
TOTAL CONTACTS:	BANK $=775.0$	BOAT $=74.0$	OTHER =11.0	ALL =	860.0						
TOTAL HOURS:	BANK $=4771.5$	BOAT $=569.0$	OTHER =68.3	ALL $=$	5408.8						

TOTAL CATCH/HR

Estimate					Std Error			
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.485	0.000	0.000	0.485	0.089	0.000	0.000	0.089
MARWE	0.165	0.000	0.000	0.165	0.043	0.000	0.000	0.043
APRWE	0.325	0.000	0.000	0.285	0.044	0.000	0.000	0.030
APRWD	0.593	0.000	0.000	0.517	0.206	0.000	0.000	0.176
MAYWD	0.593	0.360	0.014	0.541	0.167	0.161	0.016	0.115
MAYWE	0.373	0.362	0.000	0.364	0.078	0.121	0.000	0.362
JUNWD	0.412	0.595	0.000	0.445	0.104	0.202	0.000	0.172
JUNWE	0.192	0.191	0.511	0.209	0.021	0.053	0.227	0.048
JULWE	0.152	0.068	0.000	0.127	0.028	0.052	0.000	0.029
JULWD	0.119	0.000	0.000	0.091	0.032	0.000	0.000	0.022
AUGWD	0.257	0.264	0.143	0.253	0.053	0.166	0.062	0.069
AUGWE	0.198	0.185	0.000	0.186	0.038	0.118	0.000	0.057
ALL	0.320	0.246	0.148	0.301	0.016	0.048	0.044	0.056

CREEL CATCH
Water 55928Year 2006 Stat Method 1

Estimate								
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	110.3	0.0	0.0	110.3	46.1	0.0	0.0	46.1
MARWE	30.3	0.0	0.0	30.3	20.3	0.0	0.0	20.3
APRWE	255.1	0.0	0.0	255.1	112.7	0.0	0.0	112.7
APRWD	181.3	0.0	0.0	181.3	61.9	0.0	0.0	61.9
MAYWD	1219.9	160.4	1.2	1381.6	312.4	133.8	1.2	405.0
MAYWE	1196.2	122.5	0.0	1318.7	293.9	40.5	0.0	296.6
JUNWD	877.5	387.0	0.0	1264.5	235.0	174.9	0.0	519.9
JUNWE	551.1	123.5	107.3	781.9	108.5	40.5	36.3	215.2
JULWE	299.8	42.1	0.0	341.9	64.4	33.7	0.0	88.9
JULWD	156.7	0.0	0.0	156.7	44.8	0.0	0.0	44.8
AUGWD	411.5	183.1	18.4	613.0	130.6	97.8	18.4	175.2
AUGWE	272.7	101.5	0.0	374.2	58.5	52.9	0.0	988.9
ALL	5562.3	1120.0	127.0	6809.3	544.6	255.5	40.7	798.8

CREEL CATCH/HR
Water 55928Year 2006 Stat Method 1

Estimate											BANK	BOAT	OTHER	ALL
STRATA	BANK	BOAT	OTHER	ALL	BAT	0.058								
MARWD	0.139	0.000	0.000	0.139	0.058	0.000	0.000	0.058						
MARWE	0.066	0.000	0.000	0.066	0.013	0.000	0.000	0.013						
APRWE	0.246	0.000	0.000	0.215	0.074	0.000	0.000	0.056						
APRWD	0.277	0.000	0.000	0.242	0.075	0.000	0.000	0.068						
MAYWD	0.510	0.360	0.014	0.472	0.127	0.161	0.016	0.085						
MAYWE	0.361	0.362	0.000	0.353	0.077	0.121	0.000	0.351						
JUNWD	0.412	0.595	0.000	0.445	0.104	0.202	0.000	0.172						
JUNWE	0.181	0.187	0.511	0.199	0.017	0.052	0.227	0.046						
JULWE	0.151	0.068	0.000	0.126	0.029	0.052	0.000	0.030						
JULWD	0.115	0.000	0.000	0.088	0.033	0.000	0.000	0.023						
AUGWD	0.247	0.264	0.143	0.246	0.057	0.166	0.062	0.071						
AUGWE	0.186	0.158	0.000	0.170	0.035	0.097	0.000	0.048						
ALL	0.274	0.242	0.148	0.264	0.014	0.047	0.044	0.055						

RETURNED CATCH

Estimate								
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	274.5	0.0	0.0	274.5	202.1	0.0	0.0	202.1
MARWE	45.3	0.0	0.0	45.3	35.2	0.0	0.0	35.2
APRWE	82.4	0.0	0.0	82.4	42.1	0.0	0.0	42.1
APRWD	206.4	0.0	0.0	206.4	143.6	0.0	0.0	143.6
MAYWD	199.6	0.0	0.0	199.6	99.0	0.0	0.0	99.0
MAYWE	40.5	0.0	0.0	40.5	19.9	0.0	0.0	19.9
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWE	33.8	2.5	0.0	36.3	33.8	2.5	0.0	36.3
JULWE	2.2	0.0	0.0	2.2	2.2	0.0	0.0	2.2
JULWD	5.0	0.0	0.0	5.0	5.0	0.0	0.0	5.0
AUGWD	17.0	0.0	0.0	17.0	17.0	0.0	0.0	17.0
AUGWE	17.8	17.9	0.0	35.7	11.7	12.2	0.0	20.8
ALL	924.6	20.4	0.0	944.9	276.1	12.5	0.0	277.0

RETURNED CATCH/HR

Water 55928Year 2006 Stat Method 1								
STRATA	BANK	Estimate	BOAT	OTHER	ALL	BANK	Std Error	BOAT
MARWD	0.346	0.000	0.000	0.346	0.086	0.000	0.000	0.086
MARWE	0.099	0.000	0.000	0.099	0.031	0.000	0.000	0.031
APRWE	0.079	0.000	0.000	0.070	0.035	0.000	0.000	0.033
APRWD	0.316	0.000	0.000	0.275	0.179	0.000	0.000	0.153
MAYWWD	0.083	0.000	0.000	0.068	0.053	0.000	0.000	0.042
MAYWE	0.012	0.000	0.000	0.011	0.000	0.000	0.000	0.011
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWE	0.011	0.004	0.000	0.009	0.012	0.000	0.000	0.000
JULWE	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000
JULWD	0.004	0.000	0.000	0.003	0.000	0.000	0.000	0.000
AUGWD	0.010	0.000	0.000	0.007	0.000	0.000	0.000	0.000
AUGWE	0.012	0.028	0.000	0.016	0.000	0.022	0.000	0.000
ALL	0.046	0.004	0.000	0.037	0.013	0.000	0.000	0.010

FISHERMAN
Water 55928Year 2006 Stat Method 1

Estimate												Std Error
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL				
MARWD	296.6	0.0	0.0	296.6	172.8	0.0	0.0	172.8				
MARWE	99.5	0.0	0.0	99.5	36.0	0.0	0.0	36.0				
APRWE	142.7	0.0	0.0	142.7	31.5	0.0	0.0	31.5				
APRWD	200.0	28.8	0.0	228.8	32.6	28.8	0.0	45.7				
MAYWD	619.7	133.2	0.6	753.5	177.8	81.5	0.6	268.2				
MAYWE	608.0	36.9	1.2	646.1	123.4	3.8	1.2	123.4				
JUNWD	498.0	280.6	0.0	778.6	67.6	125.2	0.0	283.6				
JUNWE	408.9	173.3	410.2	992.4	54.9	57.2	371.1	451.5				
JULWE	288.8	142.5	10.3	441.5	41.9	20.3	10.3	123.4				
JULWD	304.0	104.1	0.0	408.1	43.9	92.1	0.0	136.3				
AUGWD	378.5	97.4	18.4	494.3	88.0	22.4	18.4	121.7				
AUGWE	309.8	89.0	5.0	403.7	100.6	15.9	5.0	124.2				
ALL	4154.5	1085.8	445.6	5685.9	330.4	189.9	371.7	685.3				

Average Kept Catch Size (In INCH)

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	11.8	0.0	0.0	11.8	
MARWE	12.0	0.0	0.0	12.0	
APRWE	11.4	0.0	0.0	11.4	
APRWD	13.7	0.0	0.0	13.7	
MAYWD	12.5	12.5	12.3	12.5	
MAYWE	12.1	12.9	0.0	12.1	
JUNWD	11.9	13.1	0.0	12.3	
JUNWE	12.1	13.2	13.1	12.4	
JULWE	13.1	12.3	0.0	13.0	
JULWD	12.4	0.0	0.0	12.4	
AUGWD	12.2	12.5	16.0	12.4	
AUGWE	11.4	13.6	0.0	12.0	
ALL	12.2	12.9	13.5	12.4	

Average Kept Catch Size (In CM)

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	30.08	0	0	30.08	
MARWE	30.49	0	0	30.49	
APRWE	28.98	0	0	28.98	
APRWD	34.88	0	0	34.88	
MAYWD	31.81	31.88	31.12	31.82	
MAYWE	30.67	32.69	0	30.86	
JUNWD	30.16	33.34	0	31.13	
JUNWE	30.76	33.57	33.17	31.54	
JULWE	33.3	31.27	0	33.05	
JULWD	31.39	0	0	31.39	
AUGWD	31.04	31.67	40.64	31.52	
AUGWE	29.01	34.53	0	30.5	
ALL	30.99	32.77	34.29	31.5	

Average Completed Trip Length
Water 55928Year 2006 Stat Method

Estimate						
STRATA	BANK	BOAT	OTHER	ALL		
MARWD	2.4	0.0	0.0	2.4		
MARWE	2.5	0.0	0.0	2.5		
APRWE	2.7	0.0	0.0	2.7		
APRWD	2.2	2.0	5.0	2.4		
MAYWD	2.5	3.6	4.0	2.9		
MAYWE	3.7	5.4	3.0	4.1		
JUNWD	2.8	3.4	0.0	3.0		
JUNWE	3.3	4.4	4.5	3.5		
JULWE	4.2	2.2	0.0	3.9		
JULWD	3.0	4.1	0.0	3.2		
AUGWD	2.9	4.0	7.0	3.3		
AUGWE	3.5	3.8	0.0	3.6		
ALL	3.1	3.9	4.3	3.3		

SUMMARY	Water	55928	Year	2006 Stat Method		1		
	Estimate					Std Er		
REPORT	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
Fisherman Hours	20301.1	4634.7	856.1	25792.0	1282.1	360.3	131.7	1470.6
Total Catch	6486.8	1140.4	127.0	7754.2	641.5	258.3	40.7	869.8
Total Catch/hour	0.320	0.246	0.148	0.301	0.016	0.048	0.044	0.056
Kept catch	5562.3	1120.0	127.0	6809.3	544.6	255.5	40.7	798.8
Kept Catch/hour	0.274	0.242	0.148	0.264	0.014	0.047	0.044	0.055
Returned Catch	924.6	20.4	0.0	944.9	276.1	12.5	0.0	277.0
Returned Catch/hour	0.046	0.004	0.000	0.037	0.013	0.000	0.000	0.010
Fisherman	4154.5	1085.8	445.6	5685.9	330.4	189.9	371.7	685.3
Average Kept Catch Size (INCH)	12.2	12.9	13.5	12.4				
Average Kept Catch Size (CM)	30.99	32.77	34.29	31.5				
Average Trip Length	3.1	3.9	4.3	3.3				

		Estimate				Std Error		
STRATA	BANK	BOAT	OTHER	R ALL	BANK	BOAT	OTHER	ALL
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWE	13.4	0.0	0.0	13.4	9.2	0.0	0.0	9.2
JUNWD	0.0	6.8	0.0	6.8	0.0	6.8	0.0	6.8
JUNWE	0.0	2.5	0.0	2.5	0.0	2.5	0.0	2.5
JULWE	1.6	0.0	0.0	1.6	1.6	0.0	0.0	1.6
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWD	100.0	128.5	18.4	246.9	43.9	89.4	18.4	118.1
AUGWE	91.9	4.0	0.0	95.9	43.7	4.0	0.0	42.5
ALL	207.0	141.8	18.4	367.2	62.7	89.8	18.4	126.0
TOTAL CONTACTS:		BANK $=775.0$		BOAT $=74.0$	OTHER $=11.0$		ALL $=860.0$	
		BANK $=4771.5$		BOAT $=569.0$	OTHER $=68.3$		ALL $=5408.8$	

TOTAL CATCH/HR SPC CUT
Water 55928Year 2006 Stat Method 1

Estimate					Std Error			
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWE	0.000	0.000	0.000	0.000	000	0.000	0.000	0.000
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWE	0.004	0.000	0.000	0.004	0.000	0.000	0.000	0.000
JUNWD	0.000	0.011	0.000	0.002	0.000	0.011	0.000	0.000
JUNWE	0.000	0.004	0.000	0.001	0.000	0.000	0.000	0.000
JULWE	0.001	0.000	0.000	0.001	000	0.000	0.000	0.000
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWD	0.060	0.185	0.143	0.099	0.034	0.142	0.062	0.057
AUGWE	0.063	0.006	0.000	0.044	0.033	0.000	0.000	0.022
ALL	0.010	0.031	0.021	0.014	0.000	0.020	0.020	0.000

CREEL CATCH SPC CUT
Water 55928Year 2006 Stat Method 1

Estimate					Std Error			
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWE	13.4	0.0	0.0	13.4	9.2	0.0	0.0	9.2
JUNWD	0.0	6.8	0.0	6.8	0.0	6.8	0.0	6.8
JUNWE	0.0	2.5	0.0	2.5	0.0	2.5	0.0	2.5
JULWE	1.6	0.0	0.0	1.6	1.6	0.0	0.0	1.6
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWD	100.0	128.5	18.4	246.9	43.9	89.4	18.4	118.1
AUGWE	88.7	4.0	0.0	92.7	42.3	4.0	0.0	41.3
ALL	203.7	141.8	18.4	363.9	61.7	89.8	18.4	125.6

CREEL CATCH/HR SPC CUT
Water 55928Year 2006 Stat Method 1

Estimate				Std Error				
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWE	0.004	0.000	0.000	0.004	0.000	0.000	0.000	0.000
JUNWD	0.000	0.011	0.000	0.002	0.000	0.011	0.000	0.000
JUNWE	0.000	0.004	0.000	0.001	0.000	0.000	0.000	0.000
JULWE	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWD	0.060	0.185	0.143	0.099	0.034	0.142	0.062	0.057
AUGWE	0.061	0.006	0.000	0.042	0.032	0.000	0.000	0.021
ALL	0.010	0.031	0.021	0.014	0.000	0.020	0.020	0.000

RETURNED CATCH SPC CUT
Water 55928Year 2006 Stat Method 1

Estimate											Std Error	
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL				
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
APRWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
MAYWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
MAYWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
JUNWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
JULWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
AUGWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
AUGWE	3.2	0.0	0.0	3.2	3.2	0.0	0.0	3.2				
ALL	3.2	0.0	0.0	3.2	3.2	0.0	0.0	3.2				

RETURNED CATCH/HR SPC CUT

Estimate					Std Error			
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWE	0.002	0.000	0.000	0.001	0.000	0.000	0.000	0.000
ALL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Average Kept Catch Size (In INCH) SPC CUT Water 55928Year 2006 Stat Method 1

Estimate						
STRATA	BANK	BOAT	OTHER	ALL		
MARWD	0.0	0.0	0.0	0.0		
MARWE	0.0	0.0	0.0	0.0		
APRWE	0.0	0.0	0.0	0.0		
APRWD	0.0	0.0	0.0	0.0		
MAYWD	0.0	0.0	0.0	0.0		
MAYWE	13.3	0.0	0.0	13.3		
JUNWD	0.0	13.0	0.0	13.0		
JUNWE	0.0	13.0	0.0	13.0		
JULWE	14.0	0.0	0.0	14.0		
JULWD	0.0	0.0	0.0	0.0		
AUGWD	11.2	12.1	16.0	12.0		
AUGWE	11.6	13.0	0.0	11.7		
ALL	11.5	12.1	16.0	12.0		

Average Kept Catch Size (In CM) SPC CUT Water 55928Year 2006 Stat Method 1

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	0	0	0	0	
MARWE	0	0	0	0	
APRWE	0	0	0	0	
APRWD	0	0	0	0	
MAYWD	0	0	0	0	
MAYWE	33.83	0	0	33.83	
JUNWD	0	33.02	0	33.02	
JUNWE	0	33.02	0	33.02	
JULWE	35.56	0	0	35.56	
JULWD	0	0	0	0	
AUGWD	28.34	30.63	40.64	30.45	
AUGWE	29.57	33.02	0	29.72	
ALL	29.21	30.73	40.64	30.48	

Average Completed Trip Length

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	2.4	0.0	0.0	2.4	
MARWE	2.5	0.0	0.0	2.5	
APRWE	2.7	0.0	0.0	2.7	
APRWD	2.2	2.0	5.0	2.4	
MAYWD	2.5	3.6	4.0	2.9	
MAYWE	3.7	5.4	3.0	4.1	
JUNWD	2.8	3.4	0.0	3.0	
JUNWE	3.3	4.4	4.5	3.5	
JULWE	4.2	2.2	0.0	3.9	
JULWD	3.0	4.1	0.0	3.2	
AUGWD	2.9	4.0	7.0	3.3	
AUGWE	3.5	3.8	0.0	3.6	
ALL	3.1	3.9	4.3	3.3	

TOTAL CATCH SPC KOK
Water 55928Year 2006 Stat Method 1

Estimate								
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWD	16.0	0.0	0.0	16.0	16.0	0.0	0.0	16.0
MAYWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWE	0.0	6.7	0.0	6.7	0.0	6.7	0.0	6.7
JULWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWE	2.6	0.0	0.0	2.6	2.6	0.0	0.0	2.6
ALL	18.7	6.7	0.0	25.4	16.2	6.7	0.0	17.6
TOTAL CONTACTS:	BANK $=775.0$	BOAT $=74.0$	OTHER =11.0	ALL $=$	860.0			
TOTAL HOURS:	BANK $=4771.5$	BOAT $=569.0$	OTHER =68.3	ALL =	5408.8			

TOTAL CATCH/HR SPC KOK
Water 55928Year 2006 Stat Method 1

Estimate										Std Error			
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL					
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
MAYWD	0.007	0.000	0.000	0.005	0.000	0.000	0.000	0.000					
MAYWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
JUNWE	0.000	0.010	0.000	0.002	0.000	0.011	0.000	0.000					
JULWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
AUGWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
AUGWE	0.002	0.000	0.000	0.001	0.000	0.000	0.000	0.000					
ALL	0.001	0.001	0.000	0.001	0.000	0.000	0.000	0.000					

Estimate				Std Error				
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWD	16.0	0.0	0.0	16.0	16.0	0.0	0.0	16.0
MAYWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWE	0.0	6.7	0.0	6.7	0.0	6.7	0.0	6.7
JULWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWE	2.6	0.0	0.0	2.6	2.6	0.0	0.0	2.6
ALL	18.7	6.7	0.0	25.4	16.2	6.7	0.0	17.6

CREEL CATCH/HR SPC KOK
Water 55928Year 2006 Stat Method 1

Estimate					Std Error			
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWD	0.007	0.000	0.000	0.005	0.000	0.000	0.000	0.000
MAYWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWE	0.000	0.010	0.000	0.002	0.000	0.011	0.000	0.000
JULWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWE	0.002	0.000	0.000	0.001	0.000	0.000	0.000	0.000
ALL	0.001	0.001	0.000	0.001	0.000	0.000	0.000	0.000

RETURNED CATCH SPC KOK
Water 55928 Year 2006 Stat Method 1

Estimate								
STRATA	BANK	BOAT	OTHER	ALL	BANK	Std Error		
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ALL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

RETURNED CATCH/HR SPC KOK

Water 55928Year 2006 Stat Method 1									
STRATA	BANK	Estimate	BOAT	OTHER	ALL	BANK	Std Error		
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
MAYWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
JUNWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
JULWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
AUGWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
AUGWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
ALL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

Average Kept Catch Size (In INCH) SPC KOK Water 55928Year 2006 Stat Method 1

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	0.0	0.0	0.0	0.0	
MARWE	0.0	0.0	0.0	0.0	
APRWE	0.0	0.0	0.0	0.0	
APRWD	0.0	0.0	0.0	0.0	
MAYWD	11.5	0.0	0.0	11.5	
MAYWE	0.0	0.0	0.0	0.0	
JUNWD	0.0	0.0	0.0	0.0	
JUNWE	0.0	13.0	0.0	13.0	
JULWE	0.0	0.0	0.0	0.0	
JULWD	0.0	0.0	0.0	0.0	
AUGWD	0.0	0.0	0.0	0.0	
AUGWE	14.0	0.0	0.0	14.0	
ALL	11.9	13.0	0.0	12.2	

Average Kept Catch Size (In CM) SPC KOK Water 55928Year 2006 Stat Method 1

Estimate						
STRATA	BANK	BOAT	OTHER	ALL		
MARWD	0	0	0	0		
MARWE	0	0	0	0		
APRWE	0	0	0	0		
APRWD	0	0	0	0		
MAYWD	29.21	0	0	29.21		
MAYWE	0	0	0	0		
JUNWD	0	0	0	0		
JUNWE	0	33.02	0	33.02		
JULWE	0	0	0	0		
JULWD	0	0	0	0		
AUGWD	0	0	0	0		
AUGWE	35.56	0	0	35.56		
ALL	30.23	33.02	0	30.99		

Average Completed Trip Length

Estimate						
STRATA	BANK	BOAT	OTHER	ALL		
MARWD	2.4	0.0	0.0	2.4		
MARWE	2.5	0.0	0.0	2.5		
APRWE	2.7	0.0	0.0	2.7		
APRWD	2.2	2.0	5.0	2.4		
MAYWD	2.5	3.6	4.0	2.9		
MAYWE	3.7	5.4	3.0	4.1		
JUNWD	2.8	3.4	0.0	3.0		
JUNWE	3.3	4.4	4.5	3.5		
JULWE	4.2	2.2	0.0	3.9		
JULWD	3.0	4.1	0.0	3.2		
AUGWD	2.9	4.0	7.0	3.3		
AUGWE	3.5	3.8	0.0	3.6		
ALL	3.1	3.9	4.3	3.3		

SUMMARY SPC KOK	Water	55928	Year	2006	Stat Method	1		
	Estimate			Std Error				
REPORT	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
Total Catch	18.7	6.7	0.0	25.4	16.2	6.7	0.0	17.6
Total Catch/hour	0.001	0.001	0.000	0.001	0.000	0.000	0.000	0.000
Kept catch	18.7	6.7	0.0	25.4	16.2	6.7	0.0	17.6
Kept Catch/hour	0.001	0.001	0.000	0.001	0.000	0.000	0.000	0.000
Returned Catch	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Returned Catch/hour	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Average Kept Catch Size (INCH)	11.9	13.0	0.0	12.2				
Average Kept Catch Size (CM)	30.11	33.02	0	30.88				
Average Trip Length	3.1	3.9	4.3	3.3				

TOTAL CATCH SPC LOC
Water 55928Year 2006 Stat Method 1

TOTAL CATCH/HR SPC LOC
Water 55928 Year 2006 Stat Method 1

Estimate				Std Error				
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.007	0.000	0.000	0.007	0.000	0.000	0.000	0.000
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ALL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

CREEL CATCH SPC LOC
Water 55928Year 2006 Stat Method 1

Estimate								
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ALL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

CREEL CATCH/HR SPC LOC
Water 55928Year 2006 Stat Method 1

Estimate					Std Error			
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ALL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Estimate								
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	5.2	0.0	0.0	5.2	5.2	0.0	0.0	5.2
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ALL	5.2	0.0	0.0	5.2	5.2	0.0	0.0	5.2

RETURNED CATCH/HR SPC LOC

Estimate										Std Error				
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL						
MARWD	0.007	0.000	0.000	0.007	0.000	0.000	0.000	0.000						
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
MAYWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
JUNWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
JULWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
AUGWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
AUGWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
ALL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						

Average Kept Catch Size (In INCH) SPC LOC Water 55928Year 2006 Stat Method 1

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	0.0	0.0	0.0	0.0	
MARWE	0.0	0.0	0.0	0.0	
APRWE	0.0	0.0	0.0	0.0	
APRWD	0.0	0.0	0.0	0.0	
MAYWD	0.0	0.0	0.0	0.0	
MAYWE	0.0	0.0	0.0	0.0	
JUNWD	0.0	0.0	0.0	0.0	
JUNWE	0.0	0.0	0.0	0.0	
JULWE	0.0	0.0	0.0	0.0	
JULWD	0.0	0.0	0.0	0.0	
AUGWD	0.0	0.0	0.0	0.0	
AUGWE	0.0	0.0	0.0	0.0	
ALL	0.0	0.0	0.0	0.0	

Average Kept Catch Size (In CM) SPC LOC Water 55928Year 2006 Stat Method 1

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	0	0	0	0	
MARWE	0	0	0	0	
APRWE	0	0	0	0	
APRWD	0	0	0	0	
MAYWD	0	0	0	0	
MAYWE	0	0	0	0	
JUNWD	0	0	0	0	
JUNWE	0	0	0	0	
JULWE	0	0	0	0	
JULWDD	0	0	0	0	
AUGWD	0	0	0	0	
AUGWE	0	0	0	0	
ALL	0	0	0	0	

Average Completed Trip Length

Water 55928Year 2006 Stat Method

Estimate							
STRATA	BANK	BOAT	OTHER	ALL			
MARWD	2.4	0.0	0.0	2.4			
MARWE	2.5	0.0	0.0	2.5			
APRWE	2.7	0.0	0.0	2.7			
APRWD	2.2	2.0	5.0	2.4			
MAYWD	2.5	3.6	4.0	2.9			
MAYWE	3.7	5.4	3.0	4.1			
JUNWD	2.8	3.4	0.0	3.0			
JUNWE	3.3	4.4	4.5	3.5			
JULWE	4.2	2.2	0.0	3.9			
JULWD	3.0	4.1	0.0	3.2			
AUGWD	2.9	4.0	7.0	3.3			
AUGWE	3.5	3.8	0.0	3.6			
ALL	3.1	3.9	4.3	3.3			

SUMMARY SPC LOC	Water	55928	Year	2006	Stat Method	1		
	Estimate			Std Error				
REPORT	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
Total Catch	5.2	0.0	0.0	5.2	5.2	0.0	0.0	5.2
Total Catch/hour	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Kept catch	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kept Catch/hour	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Returned Catch	5.2	0.0	0.0	5.2	5.2	0.0	0.0	5.2
Returned Catch/hour	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Average Kept Catch Size (INCH)	0.0	0.0	0.0	0.0				
Average Kept Catch Size (CM)	0	0	0	0				
Average Trip Length	3.1	3.9	4.3	3.3				

Estimate				Std Error				
STRATA	BANK	BOAT	OTHER	R ALL	BANK	BOAT	OTHER	ALL
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWE	0.0	5.9	0.0	5.9	0.0	5.9	0.0	5.9
ALL	0.0	5.9	0.0	5.9	0.0	5.9	0.0	5.9
TOTAL CONTACTS:		BANK $=775.0$		BOAT $=74.0$	OTHER =11.0		ALL $=860.0$	
TOTAL H	JRS:	BANK $=4771.5$		BOAT $=569.0$	OTHER $=68.3$		ALL $=5408.8$	

TOTAL CATCH/HR SPC MAC
Water 55928Year 2006 Stat Method 1

Estimate				Std Error				
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWE	0.000	0.009	0.000	0.003	0.000	0.000	0.000	0.000
ALL	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000

CREEL CATCH SPC MAC
Water 55928Year 2006 Stat Method 1

| Estimate | | | | | Std Error | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| STRATA | BANK | BOAT | OTHER | ALL | BANK | BOAT | OTHER | ALL |
| MARWD | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| MARWE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| APRWE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| APRWD | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| MAYWD | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| MAYWE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| JUNWD | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| JUNWE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| JULWE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| JULWD | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| AUGWD | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| AUGWE | 0.0 | 5.9 | 0.0 | 5.9 | 0.0 | 5.9 | 0.0 | 5.9 |
| ALL | 0.0 | 5.9 | 0.0 | 5.9 | 0.0 | 5.9 | 0.0 | 5.9 |

CREEL CATCH/HR SPC MAC
Water 55928Year 2006 Stat Method 1

Estimate						Std Error		
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWE	0.000	0.009	0.000	0.003	0.000	0.000	0.000	0.000
ALL	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000

RETURNED CATCH SPC MAC

Estimate								
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ALL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

RETURNED CATCH/HR SPC MAC

Estimate												Std Error	
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL					
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
MAYWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
JUNWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
JULWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
AUGWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
AUGWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
ALL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					

Average Kept Catch Size (In INCH) SPC MAC Water 55928Year 2006 Stat Method 1

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	0.0	0.0	0.0	0.0	
MARWE	0.0	0.0	0.0	0.0	
APRWE	0.0	0.0	0.0	0.0	
APRWD	0.0	0.0	0.0	0.0	
MAYWD	0.0	0.0	0.0	0.0	
MAYWE	0.0	0.0	0.0	0.0	
JUNWD	0.0	0.0	0.0	0.0	
JUNWE	0.0	0.0	0.0	0.0	
JULWE	0.0	0.0	0.0	0.0	
JULWD	0.0	0.0	0.0	0.0	
AUGWD	0.0	0.0	0.0	0.0	
AUGWE	0.0	14.0	0.0	14.0	
ALL	0.0	14.0	0.0	14.0	

Average Kept Catch Size (In CM) SPC MAC Water 55928Year 2006 Stat Method 1

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	0	0	0	0	
MARWE	0	0	0	0	
APRWE	0	0	0	0	
APRWD	0	0	0	0	
MAYWD	0	0	0	0	
MAYWE	0	0	0	0	
JUNWD	0	0	0	0	
JUNWE	0	0	0	0	
JULWE	0	0	0	0	
JULWD	0	0	0	0	
AUGWD	0	0	0	0	
AUGWE	0	35.56	0	35.56	
ALL	0	35.56	0	35.56	

Average Completed Trip Length

Estimate						
STRATA	BANK	BOAT	OTHER	ALL		
MARWD	2.4	0.0	0.0	2.4		
MARWE	2.5	0.0	0.0	2.5		
APRWE	2.7	0.0	0.0	2.7		
APRWD	2.2	2.0	5.0	2.4		
MAYWD	2.5	3.6	4.0	2.9		
MAYWE	3.7	5.4	3.0	4.1		
JUNWD	2.8	3.4	0.0	3.0		
JUNWE	3.3	4.4	4.5	3.5		
JULWE	4.2	2.2	0.0	3.9		
JULWD	3.0	4.1	0.0	3.2		
AUGWD	2.9	4.0	7.0	3.3		
AUGWE	3.5	3.8	0.0	3.6		
ALL	3.1	3.9	4.3	3.3		

SUMMARY SPC MAC	Water	55928	Year	2006	tat Method	1		
	Estimate			Std Error				
REPORT	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
Total Catch	0.0	5.9	0.0	5.9	0.0	5.9	0.0	5.9
Total Catch/hour	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Kept catch	0.0	5.9	0.0	5.9	0.0	5.9	0.0	5.9
Kept Catch/hour	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Returned Catch	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Returned Catch/hour	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Average Kept Catch Size (INCH)	0.0	14.0	0.0	14.0				
Average Kept Catch Size (CM)	0	35.56	0	35.56				
Average Trip Length	3.1	3.9	4.3	3.3				

TOTAL CATCH SPC RBT
Water 55928Year 2006 Stat Method 1

Estimate								
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	358.4	0.0	0.0	358.4	217.3	0.0	0.0	217.3
MARWE	26.7	0.0	0.0	26.7	9.8	0.0	0.0	9.8
APRWE	337.5	0.0	0.0	337.5	114.2	0.0	0.0	114.2
APRWD	380.8	0.0	0.0	380.8	186.1	0.0	0.0	186.1
MAYWD	1403.5	160.4	1.2	1565.2	351.0	133.8	1.2	435.4
MAYWE	1215.7	122.5	0.0	1338.2	299.8	40.5	0.0	302.5
JUNWD	877.5	380.1	0.0	1257.6	235.0	177.7	0.0	520.3
JUNWE	584.9	116.8	107.3	809.0	108.5	43.1	36.3	218.2
JULWE	287.2	16.0	0.0	303.2	61.6	9.8	0.0	69.2
JULWD	161.6	0.0	0.0	161.6	44.1	0.0	0.0	44.1
AUGWD	325.4	54.6	0.0	380.0	148.9	31.0	0.0	170.4
AUGWE	196.0	101.2	0.0	297.2	62.8	65.6	0.0	116.1
ALL	6155.3	951.6	108.6	7215.5	637.9	241.5	36.3	862.4
TOTAL CONTACTS:	BANK $=775.0$	BOAT $=74.0$	OTHER =11.0	ALL $=$	860.0			
TOTAL HOURS:	BANK $=4771.5$	BOAT $=569.0$	OTHER $=68.3$	ALL $=$	5408.8			

TOTAL CATCH/HR SPC RBT
Water 55928Year 2006 Stat Method 1

Estimate										Std Error				
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL						
MARWD	0.452	0.000	0.000	0.452	0.086	0.000	0.000	0.086						
MARWE	0.058	0.000	0.000	0.058	0.017	0.000	0.000	0.017						
APRWE	0.325	0.000	0.000	0.285	0.044	0.000	0.000	0.030						
APRWD	0.582	0.000	0.000	0.508	0.209	0.000	0.000	0.178						
MAYWD	0.587	0.360	0.014	0.535	0.165	0.161	0.016	0.113						
MAYWE	0.367	0.362	0.000	0.358	0.080	0.121	0.000	0.357						
JUNWD	0.412	0.585	0.000	0.443	0.104	0.207	0.000	0.172						
JUNWE	0.192	0.177	0.511	0.206	0.021	0.056	0.227	0.048						
JULWE	0.145	0.026	0.000	0.112	0.028	0.016	0.000	0.024						
JULWD	0.119	0.000	0.000	0.091	0.032	0.000	0.000	0.022						
AUGWD	0.195	0.079	0.000	0.153	0.059	0.053	0.000	0.054						
AUGWE	0.134	0.157	0.000	0.135	0.033	0.117	0.000	0.052						
ALL	0.303	0.205	0.127	0.280	0.017	0.045	0.045	0.055						

CREEL CATCH SPC RBT
 Water 55928Year 2006 Stat Method 1

Estimate																	
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL									
MARWD	89.1	0.0	0.0	89.1	36.7	0.0	0.0	36.7									
MARWE	7.7	0.0	0.0	7.7	4.6	0.0	0.0	4.6									
APRWE	255.1	0.0	0.0	255.1	112.7	0.0	0.0	112.7									
APRWD	174.3	0.0	0.0	174.3	62.5	0.0	0.0	62.5									
MAYWD	1203.9	160.4	1.2	1365.5	314.5	133.8	1.2	406.6									
MAYWE	1175.2	122.5	0.0	1297.7	299.2	40.5	0.0	301.9									
JUNWD	877.5	380.1	0.0	1257.6	235.0	177.7	0.0	520.3									
JUNWE	551.1	114.3	107.3	772.7	108.5	43.0	36.3	215.2									
JULWE	285.1	16.0	0.0	301.0	62.1	9.8	0.0	69.7									
JULWD	156.7	0.0	0.0	156.7	44.8	0.0	0.0	44.8									
AUGWD	308.4	54.6	0.0	363.0	141.2	31.0	0.0	161.0									
AUGWE	181.4	83.4	0.0	264.8	56.5	53.6	0.0	98.1									
ALL	5265.4	931.3	108.6	6305.2	549.9	238.5	36.3	796.2									

CREEL CATCH/HR SPC RBT
Water 55928Year 2006 Stat Method 1

Estimate											BANK	BOAT	OTHER	ALL
STRATA	BANK	BOAT	OTHER	ALL	BAT	0.067								
MARWD	0.112	0.000	0.000	0.112	0.067	0.000	0.000	0.067						
MARWE	0.017	0.000	0.000	0.017	0.015	0.000	0.000	0.015						
APRWE	0.246	0.000	0.000	0.215	0.074	0.000	0.000	0.056						
APRWD	0.267	0.000	0.000	0.232	0.075	0.000	0.000	0.068						
MAYWD	0.503	0.360	0.014	0.467	0.125	0.161	0.016	0.084						
MAYWE	0.355	0.362	0.000	0.348	0.078	0.121	0.000	0.345						
JUNWD	0.412	0.585	0.000	0.443	0.104	0.207	0.000	0.172						
JUNWE	0.181	0.173	0.511	0.197	0.017	0.055	0.227	0.045						
JULWE	0.144	0.026	0.000	0.111	0.028	0.016	0.000	0.024						
JULWD	0.115	0.000	0.000	0.088	0.033	0.000	0.000	0.023						
AUGWD	0.185	0.079	0.000	0.146	0.060	0.053	0.000	0.052						
AUGWE	0.124	0.129	0.000	0.120	0.029	0.095	0.000	0.043						
ALL	0.259	0.201	0.127	0.244	0.016	0.044	0.045	0.054						

RETURNED CATCH SPC RBT
Water 55928 Year 2006 Stat Method 1

Estimate								
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	269.4	0.0	0.0	269.4	203.4	0.0	0.0	203.4
MARWE	19.0	0.0	0.0	19.0	9.5	0.0	0.0	9.5
APRWE	82.4	0.0	0.0	82.4	42.1	0.0	0.0	42.1
APRWD	206.4	0.0	0.0	206.4	143.6	0.0	0.0	143.6
MAYWD	199.6	0.0	0.0	199.6	99.0	0.0	0.0	99.0
MAYWE	40.5	0.0	0.0	40.5	19.9	0.0	0.0	19.9
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWE	33.8	2.5	0.0	36.3	33.8	2.5	0.0	36.3
JULWE	2.2	0.0	0.0	2.2	2.2	0.0	0.0	2.2
JULWD	5.0	0.0	0.0	5.0	5.0	0.0	0.0	5.0
AUGWD	17.0	0.0	0.0	17.0	17.0	0.0	0.0	17.0
AUGWE	14.6	17.9	0.0	32.5	9.6	12.2	0.0	19.7
ALL	889.9	20.4	0.0	910.2	274.9	12.5	0.0	275.8

RETURNED CATCH/HR SPC RBT Water 55928Year 2006 Stat Method 1

Estimate					Std Error			
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.340	0.000	0.000	0.340	0.089	0.000	0.000	0.089
MARWE	0.042	0.000	0.000	0.042	0.000	0.000	0.000	0.000
APRWE	0.079	0.000	0.000	0.070	0.035	0.000	0.000	0.033
APRWD	0.316	0.000	0.000	0.275	0.179	0.000	0.000	0.153
MAYWD	0.083	0.000	0.000	0.068	0.053	0.000	0.000	0.042
MAYWE	0.012	0.000	0.000	0.011	0.000	0.000	0.000	0.011
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWE	0.011	0.004	0.000	0.009	0.012	0.000	0.000	0.000
JULWE	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000
JULWD	0.004	0.000	0.000	0.003	0.000	0.000	0.000	0.000
AUGWD	0.010	0.000	0.000	0.007	0.000	0.000	0.000	0.000
AUGWE	0.010	0.028	0.000	0.015	0.000	0.022	0.000	0.000
ALL	0.044	0.004	0.000	0.035	0.013	0.000	0.000	0.010

Average Kept Catch Size (In INCH) SPC RBT Water 55928Year 2006 Stat Method 1

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	12.7	0.0	0.0	12.7	
MARWE	9.6	0.0	0.0	9.6	
APRWE	11.4	0.0	0.0	11.4	
APRWD	12.4	0.0	0.0	12.4	
MAYWD	12.5	12.5	12.3	12.5	
MAYWE	11.9	12.9	0.0	12.0	
JUNWD	11.9	13.1	0.0	12.3	
JUNWE	12.1	13.2	13.1	12.4	
JULWE	12.9	12.5	0.0	12.9	
JULWD	12.4	0.0	0.0	12.4	
AUGWD	12.3	13.4	0.0	12.5	
AUGWE	11.3	11.3	0.0	11.3	
ALL	12.1	12.9	13.1	12.3	

Average Kept Catch Size (In CM) SPC RBT Water55928Year 2006 Stat Method 1

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	32.2	0	0	32.2	
MARWE	24.37	0	0	24.37	
APRWE	28.98	0	0	288	
APRWD	31.41	0	0	31.41	
MAYWD	31.85	31.88	31.12	31.85	
MAYWE	30.3	32.69	0	30.52	
JUNWD	30.16	33.34	0	31.12	
JUNWE	30.76	33.61	33.17	31.52	
JULWE	32.8	31.86	0	32.75	
JULWD	31.39	0	0	31.39	
AUGWD	31.29	34.1	0	31.71	
AUGWE	28.64	28.79	0	28.69	
ALL	30.73	32.77	33.27	31.24	

Average Completed Trip Length

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	2.4	0.0	0.0	2.4	
MARWE	2.5	0.0	0.0	2.5	
APRWE	2.7	0.0	0.0	2.7	
APRWD	2.2	2.0	5.0	2.4	
MAYWD	2.5	3.6	4.0	2.9	
MAYWE	3.7	5.4	3.0	4.1	
JUNWD	2.8	3.4	0.0	3.0	
JUNWE	3.3	4.4	4.5	3.5	
JULWE	4.2	2.2	0.0	3.9	
JULWD	3.0	4.1	0.0	3.2	
AUGWD	2.9	4.0	7.0	3.3	
AUGWE	3.5	3.8	0.0	3.6	
ALL	3.1	3.9	4.3	3.3	

SUMMARY SPC RBT	Water	55928	Year	2006 Stat Method		1		
	Estimate					Std Error		
REPORT	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
Total Catch	6155.3	951.6	108.6	7215.5	637.9	241.5	36.3	862.4
Total Catch/hour	0.303	0.205	0.127	0.280	0.017	0.045	0.045	0.055
Kept catch	5265.4	931.3	108.6	6305.2	549.9	238.5	36.3	796.2
Kept Catch/hour	0.259	0.201	0.127	0.244	0.016	0.044	0.045	0.054
Returned Catch	889.9	20.4	0.0	910.2	274.9	12.5	0.0	275.8
Returned Catch/hour	0.044	0.004	0.000	0.035	0.013	0.000	0.000	0.010
Average Kept Catch Size (INCH)	12.1	12.9	13.1	12.3				
Average Kept Catch Size (CM)	30.83	32.65	33.15	31.14				
Average Trip Length	3.1	3.9	4.3	3.3				

TOTAL CATCH SPC TGM

		Estimate				Std Er		
STRATA	BANK	BOAT	OTHER	R ALL	BANK	BOAT	OTHER	ALL
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APRWD	6.9	0.0	0.0	6.9	6.9	0.0	0.0	6.9
MAYWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAYWE	7.6	0.0	0.0	7.6	5.2	0.0	0.0	5.2
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUNWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JULWE	13.1	26.1	0.0	39.2	13.1	26.1	0.0	39.2
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AUGWD	3.1	0.0	0.0	3.1	3.1	0.0	0.0	3.1
AUGWE	0.0	8.2	0.0	8.2	0.0	8.2	0.0	8.2
ALL	30.7	34.3	0.0	65.0	16.0	27.4	0.0	41.1
TOTAL CONTACTS:		BANK $=775.0$		BOAT $=74.0$	OTHER $=11.0$		ALL $=860.0$	
TOTAL HOURS:		BANK $=4771.5$		BOAT $=569.0$	OTHER =68.3		ALL $=5408$	5408.8

TOTAL CATCH/HR SPC TGM
Water 55928Year 2006 Stat Method 1

Estimate						Std Error		
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWD	0.011	0.000	0.000	0.009	0.011	0.000	0.000	0.000
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWE	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000
JUNWWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWE	0.007	0.042	0.000	0.014	0.000	0.040	0.000	0.014
JULWD	0.000	0.000	0.000	0.000	000	0.000	0.000	0.000
AUGWD	0.002	0.000	0.000	0.001	0.000	0.000	0.000	0.000
AUGWE	0.000	0.013	0.000	0.004	0.000	0.013	0.000	0.000
ALL	0.002	0.007	0.000	0.003	0.000	0.000	0.000	0.000

CREEL CATCH SPC TGM
Water 55928Year 2006 Stat Method 1

Estimate												Std Error
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL				
MARWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
MARWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
APRWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
APRWD	6.9	0.0	0.0	6.9	6.9	0.0	0.0	6.9				
MAYWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
MAYWE	7.6	0.0	0.0	7.6	5.2	0.0	0.0	5.2				
JUNWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
JUNWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
JULWE	13.1	26.1	0.0	39.2	13.1	26.1	0.0	39.2				
JULWD	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
AUGWD	3.1	0.0	0.0	3.1	3.1	0.0	0.0	3.1				
AUGWE	0.0	8.2	0.0	8.2	0.0	8.2	0.0	8.2				
ALL	30.7	34.3	0.0	65.0		16.0	27.4	0.0				

CREEL CATCH/HR SPC TGM
Water 55928Year 2006 Stat Method 1

Estimate				Std Error				
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
APRWE	0.000	0.000	0.000	0.000	000	0.000	0.000	0.000
APRWD	0.011	0.000	0.000	0.009	0.011	0.000	0.000	0.000
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MAYWE	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JUNWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
JULWE	0.007	0.042	0.000	0.014	000	0.000	0.040	0.000
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AUGWD	0.002	0.000	0.000	0.001	0.000	0.000	0.000	0.000
AUGWE	0.000	0.013	0.000	0.004	0.000	0.013	0.000	0.000
ALL	0.002	0.007	0.000	0.003	0.000	0.000	0.000	0.000

RETURNED CATCH SPC TGM

Estimate								
STRATA	BANK	BOAT	OTHER	ALL	BANK	Std Error	BOAT	OTHER

RETURNED CATCH/HR SPC TGM Water 55928Year 2006 Stat Method 1

Estimate											Std Error			
STRATA	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL						
MARWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
MARWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
APRWE	0.000	0.000	0.000	0.000	000	0.000	0.000	0.000						
APRWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
MAYWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
MAYWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
JUNWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
JUNWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
JULWE	0.000	0.000	0.000	0.000	000	0.000	0.000	0.000						
JULWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
AUGWD	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
AUGWE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
ALL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						

Average Kept Catch Size (In INCH) SPC TGM Water 55928Year 2006 Stat Method 1

Estimate						
STRATA	BANK	BOAT	OTHER	ALL		
MARWD	0.0	0.0	0.0	0.0		
MARWE	0.0	0.0	0.0	0.0		
APRWE	0.0	0.0	0.0	0.0		
APRWD	48.0	0.0	0.0	48.0		
MAYWD	0.0	0.0	0.0	0.0		
MAYWE	32.7	0.0	0.0	32.7		
JUNWD	0.0	0.0	0.0	0.0		
JUNWE	0.0	0.0	0.0	0.0		
JULWE	17.3	12.2	0.0	13.9		
JULWD	0.0	0.0	0.0	0.0		
AUGWD	37.0	0.0	0.0	37.0		
AUGWE	0.0	36.5	0.0	36.5		
ALL	30.0	18.0	0.0	23.7		

Average Kept Catch Size (In CM) SPC TGM Water 55928Year 2006 Stat Method 1

Estimate					
STRATA	BANK	BOAT	OTHER	ALL	
MARWD	0	0	0	0	
MARWE	0	0	0	0	
APRWE	0	0	0	0	
APRWD	121.92	0	0	121.92	
MAYWD	0	0	0	0	
MAYWE	83.07	0	0	83.07	
JUNWD	0	0	0	0	
JUNWE	0	0	0	0	
JULWE	43.97	30.9	0	35.28	
JULWD	0	0	0	0	
AUGWD	93.98	0	0	93.98	
AUGWE	0	92.71	0	92.71	
ALL	76.2	45.72	0	60.2	

Average Completed Trip Length

Water 55928Year 2006 Stat Method

Estimate						
STRATA	BANK	BOAT	OTHER	ALL		
MARWD	2.4	0.0	0.0	2.4		
MARWE	2.5	0.0	0.0	2.5		
APRWE	2.7	0.0	0.0	2.7		
APRWD	2.2	2.0	5.0	2.4		
MAYWD	2.5	3.6	4.0	2.9		
MAYWE	3.7	5.4	3.0	4.1		
JUNWD	2.8	3.4	0.0	3.0		
JUNWE	3.3	4.4	4.5	3.5		
JULWE	4.2	2.2	0.0	3.9		
JULWD	3.0	4.1	0.0	3.2		
AUGWD	2.9	4.0	7.0	3.3		
AUGWE	3.5	3.8	0.0	3.6		
ALL	3.1	3.9	4.3	3.3		

SUMMARY SPC TGM	Water	55928	Year	2006	tat Method	1		
	Estimate			Std Error				
REPORT	BANK	BOAT	OTHER	ALL	BANK	BOAT	OTHER	ALL
Total Catch	30.7	34.3	0.0	65.0	16.0	27.4	0.0	41.1
Total Catch/hour	0.002	0.007	0.000	0.003	0.000	0.000	0.000	0.000
Kept catch	30.7	34.3	0.0	65.0	16.0	27.4	0.0	41.1
Kept Catch/hour	0.002	0.007	0.000	0.003	0.000	0.000	0.000	0.000
Returned Catch	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Returned Catch/hour	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Average Kept Catch Size (INCH)	30.0	18.0	0.0	23.7				
Average Kept Catch Size (CM)	76.26	45.7	0	60.14				
Average Trip Length	3.1	3.9	4.3	3.3				

APPENDIX II.

Molecular Techniques for Identifying Hofer (GR) Strain Rainbow Trout

CRR vs. GR AFLPs Progress Report

J. Wood, S. Silvestri, K. Ballare
Pisces Molecular
June 19, 2007

The past 12 months have been frustratingly slow for the CRR x GR AFLP work, as well as our technically related cutthroat genetics AFLP work. However, we believe we have been able to make a number of improvements, both technically and analytically, which have increased the accuracy and greatly streamlined AFLP marker analysis.

While simple conceptually, generating and scoring AFLP markers is a complicated, multi-step procedure in the lab, and is therefore extremely demanding of good technique. We have made significant improvements in most of the procedural steps. (1) Isolation of sample DNA. We have found that the AFLP procedure gives better results starting with more DNA than recommended in the literature. This is relevant to the CRR x GR work in that larger fin clip samples $\left(\sim 1 \mathrm{~cm}^{2}\right)$ give better results than very small fin clips $\left(<0.25 \mathrm{~cm}^{2}\right)$. Smaller fin clips, with less total DNA, result in overall lower fluorescent signal intensity for all fragments and reduced scoring accuracy (see (3) below). (2) Generation of AFLP marker fragments. AFLP fragments are generated by multiple enzymatic reactions: restriction digestion of sample DNA with two restriction enzymes into a large number ($>10^{6}$) genomic fragments; ligation of double-stranded DNA oligonucleotides to the genomic fragment ends, then two steps of selective PCR amplification of a small subset number of the total number of initial fragments, using a fluorescently tagged primer in the second amplification. All of these reactions involve large numbers of different genomic fragments and finite reaction times; therefore they are all much less than 100% efficient. We have found that even more thorough reaction mixing than is typically done with "ordinary" PCR reactions, results in more reproducible and stronger marker fragment amplification. (3) Separation, sizing and scoring of marker fragments on DNA sequencer. Although we are still not completely sure of the cause, we now know to watch for a "shifting" of fragment sizes. For some number of sequencer runs last winter, all the markers fragments were "shifted" - scored by the sequencer software as several base-pairs (bp) larger than they should have been. For example, if samples A and B both should have had a 100 bp fragment, in a shifted run, the fragment in B might be scored as 102 bp in size. Not surprisingly, such shifting causes serious marker scoring errors; in this example, samples A and B would be scored as very different ($\mathrm{A}=+$ for 100 bp , - for 102 bp ; $\mathrm{B}=-$ for 100 bp , + for 102 bp), when they should have been scored as the same (both + for 100 bp). We have now learned to prevent these errors by screening all sequencer runs for evidence of shifting (the same pattern of fragments in two or more samples, but offset from each other by 1-2 bp). Additionally, for many marker fragments, we have been able to widen the fragment calling "window" in the software from 1 bp in width to 2 bp (allowing a slightly broader range of peak sizes to be called one and the same peak). Finally, we also devised a fragment "culling rule": we now score only those fragments with average peak heights (in our reference and unknown samples) of 200 relative fluorescence units (rfu) or higher.

We found that fragments with average peak height less than 200 rfu were frequently not scored correctly. The peak-calling software relies primarily on the occurrence of rfu values above an arbitrary threshold to call peaks/fragments. For peaks with low average peak heights close to the threshold, small variations between samples can result in discrepant scoring. For example, with the threshold set to 50 rfu's (the default value), sample A with a peak having a height of 49 rfu's would be scored as absent, while sample B, with the same peak at a height of 51 rfu's would be scored as present. Culling the fragments scored to eliminate those with average peak heights of 200 or less, eliminated those fragments with the most frequent scoring errors at only a small cost of real data discarded. Our current CRR x GR marker set (used for STRUCTURE program runs, see below) consists of 149 AFLP polymorphic marker fragments.

In addition to optimizing these procedural or mechanical steps, we have also devoted considerable effort to optimizing data analysis. The original thesis we started with in our AFLP work, for both CRR x GR samples, as well as the cutthroat subspecies samples, was that we would be able to identify and score "perfect" markers, either subspecies or strain-specific (i.e. Colorado cutthroat vs. Greenback cutthroat, or CRR vs. GR); this is the same approach taken by most earlier genetics studies using allozymes or specific nuclear markers. However, given the genetic diversity found even closely related rainbow trout, like the CRR and GR strains, as well as the fact that AFLP marker fragments cover the entire genome, unlike allozymes or individual nuclear markers, this no longer seems the correct approach. Discarding everything but perfect markers fails to utilize a large fraction, or potentially all, of the information present in the AFLP fragment profile of a sample. Accordingly, we now score all the AFLP fragments present in an individual sample (subject to the rules above) to generate a AFLP genomic "fingerprint" for the individual which can be compared statistically to the AFLP fingerprints found in other individuals, strains, or subspecies. We are using the same approach for our cutthroat subspecies work. Comfortingly for our change in thinking, recent AFLP work in the literature shows a similar shift from looking for and using perfect diagnostic markers to comparing genomic fingerprints.

One consequence of comparing genomic fingerprints rather than absolute markers is that scoring for the presence of genes/genomic regions from one strain or subspecies in another strain or species (introgression) becomes a statistical calculation providing only probabilities and confidence intervals, rather than an absolute presence or absence, yes or no answer typical with absolute diagnostic markers. However, since a genomic fingerprint samples from a larger number of locations in the genome than one or a small number of nuclear markers, a fingerprint may have greater net sensitivity for detecting low levels of introgression than a very much smaller number of diagnostic nuclear markers.

Initially, most available population genetic computational programs were not able to correctly handle dominant markers like AFLP fragments. However, as AFLP analyses have become more commonplace, a variety of programs specifically adapted to handle AFLP data have become available (GeneMapper, AFLPOP, AFLP-SURV, TFPGA,

STRUCTURE) and this has ceased to be an issue. We have used both AFLPOP and STRUCTURE 2.2 to analyze our CRR x GR sample AFLP data.

The data that we used to refine our data analysis techniques is the AFLP marker data for the Fall, 2006 Antero River, Gunnison River and South Fork Rio Grande fin clip samples from George Schisler; these represent sites where CRR x GR (Gunnison and SF Rio Grande) or GR x Harrison Lake (Antero) fish or progeny were stocked and their genetic background identified from either stocking records. Fortuitously, our cutthroat subspecies AFLP work contributed as well to the data analysis refinement by providing very different population structures and unknown samples: Pure, but multiple, genetically diverse, known reference populations for four cutthroat subspecies to compare against unknown populations, versus a comparison of an unknown individual against two, closely related species (CRR and GR), and their deliberate intercrosses.

AFLPOP is a population assignment program for AFLP data, written as an Excel macro, that performs population allocation based on the (log) sum of frequencies/probabilities of a series of markers present or absent in population X and present or absent in individual G. (Duchesne, P., L. Bernatchez., Molecular Ecology Notes 3:380-383, 2002). Additionally, the program can be set to allocate individuals either to either two parental populations, or to F1 or F2 crosses of the parents. Table 1 shows the population assignments for the 2006 samples determined by AFLPOP.

As an alternative to AFLPOP which allocates individuals based on a known or assumed populations, the program STRUCTURE uses a Bayesian statistical approach to determine the presence of population genetic structures in a series of unknown samples, or between assorted previously identified populations (Falush, D., M. Stephens and J.K. Pritchard, Molecular Ecology Notes 1471-8286, 2007). Starting from an arbitrary set of parameters, it uses a Monte Carlo-Markov chain simulation/iteration to determine the number of genetically distinguishable populations in a test group, and the proportion of each individual's genome that is derived from each of the different populations. Not surprisingly for a program starting from an arbitrary point and running large numbers of iterations ($>100,000$), obtaining meaningful results from STRUCTURE requires careful setting of the model parameters. (Very much time was devoted to this; the parameter set used is detailed in Table 2) Figure 1 and Table 3 show the predicted proportion (admixture) of each individual's genotype derived from either the CRR or GR parental genotype.

Note for the Antero samples both the AFLPOP assignments and STRUCTURE admixture proportions may be less accurate than for either the Gunnison or SF Rio Grande samples because the non-GR parents used in the crosses for fish stocked into Antero were from the Harrison Lake strain of rainbow trout, rather than the CRR strain of rainbows and the only reference populations used in the AFLPOP and STRUCTURE analyses were CRR and GR. Both CRR and Harrison Lake have been identified as polygot strains of rainbow trout with less than straightforward genetic backgrounds, so there is some possibility that markers scored as polymorphic between CRR and GR may not be polymorphic between Harrison Lake and GR. However, given their broad genetic
backgrounds, these two strains may still be relatively more similar to each other than to the European domesticated, relatively narrowly bred GR strain. This potential issue can be resolved by including a reference population of pure Harrison Lake samples in future analyses.

Table 4 shows a comparison between the AFLPOP population assignments and the STRUCTURE program admixture q values for the 2006 samples. Note that the AFLPOP assignments were done before final culling of the marker fragment set was completed, therefore the assignments do not, yet, represent an ideal apples-to-apples comparison between the AFLPOP population assignments and the STRUCTURE program admixture q values. However, even with the slightly different marker sets used, the correspondence between the AFLPOP assignments and the STRUCTURE q values seems quite good (green shaded cells). There are relatively few individuals where the q values seem different than might be expected based on the population to which they are assigned by AFLPOP (yellow shaded cells) (with the caveat noted above for the Antero GR x Harrison samples). These apparent discrepancies will be revisited when the AFLPOP assignments are redone with the same maker fragment set as was used for STRUCTURE. Also included in the rightmost column of Table 4 is the genotype ID assigned, if any, by George Schisler based on the stocking history and/or morphological characteristics of the individual fish.

Finally this past year, we also tested a group of unknown samples submitted by George Schisler and Barry Nehring in August 2006; the STRUCTURE admixture proportions are shown in Table 5 and Figure 2.

Table 1: AFLPOP Ant, Gunn, SFRG assignments

Sample	assignment
Ant-66949	HO Backcross
Ant-66950	F2
Ant-66951	F2
Ant-66952	F2
Ant-66953	F2
Ant-66954	F2
Ant-66955	HO Backcross
Ant-66956	F2
Ant-66957	F2
Ant-66958	F2
Gun-66911	CRR
Gun-66912	CRR
Gun-66913	CRR
Gun-66914	CRR Backcross
Gun-66915	CRR Backcross
Gun-66916	CRR
Gun-66917	CRR Backcross
Gun-66918	CRR Backcross
Gun-66919	CRR Backcross
Gun-66920	CRR
Gun-66921	CRR
Gun-66922	CRR Backcross
Gun-66923	CRR Backcross
Gun-66924	CRR Backcross
Gun-66925	F1
Gun-66926	CRR Backcross
Gun-66927	CRR Backcross
Gun-66928	CRR Backcross
Gun-66929	F2
Gun-69330	CRR
Gun-69331	CRR
Gun-66932	CRR
SFRG-66934	CRR
SFRG-66935	CRR Backcross
SFRG-66937	CRR
SFRG-66938	F2
SFRG-66939	F1
SFRG-66940	CRR Backcross
SFRG-66941	CRR Backcross
SFRG-66942	CRR Backcross
SFRG-66943	CRR
SFRG-66944	F2
SFRG-66945	CRR Backcross
SFRG-66946	CRR Backcross
SFRG-66947	CRR Backcross
SFRG-66948	CRR

Table 2: STRUCTURE parameter value file used for CRR x GR analyses

```
#define OUTFILE \\Pdc1\Data\Company\Genotyping data\HO x CRR data\2006 Ant Gunn &
SFRG\Ant_Gunn_SFRG - CRRxHO\gb0 correlated priorpop alleles\Results\gb0 correlated priorpop
alleles_run_4
#define INFILE \\Pdc1\Data\Company\Genotyping data\HO x CRR data\2006 Ant Gunn &
SFRG\Ant_Gunn_SFRG - CRRxHO\project_data
#define NUMINDS 264
#define NUMLOCI }14
#define LABEL 1
#define POPDATA 1
#define POPFLAG 1
#define PHENOTYPE 0
#define MARKERNAMES 0
#define MAPDISTANCES 0
#define ONEROWPERIND 1
#define PHASEINFO 0
#define PHASED 0
#define RECESSIVEALLELES 1
#define EXTRACOLS 1
#define MISSING 9
#define PLOIDY 2
#define MAXPOPS 5
#define BURNIN 1000
#define NUMREPS 5000
#define USEPOPINFO 1
#define GENSBACK 0
#define MIGRPRIOR 0.05
#define NOADMIX 0
#define LINKAGE 0
#define INFERALPHA 1
#define ALPHA 0.01
#define POPALPHAS 1
#define UNIFPRIORALPHA 0
#define ALPHAPRIORA 0.05
#define ALPHAPRIORB 0.0010
#define FREQSCORR 1
#define ONEFST 0
#define FPRIORMEAN 0.01
#define FPRIORSD 0.05
#define INFERLAMBDA 0
#define LAMBDA 1.0
#define COMPUTEPROB 0
#define PFROMPOPFLAGONLY 1
#define ANCESTDIST 0
#define STARTATPOPINFO 0
#define METROFREQ 10
```

\#define UPDATEFREQ 1

Table 3: STRUCTURE Ant, Gunn, SFRG admixture proportions

	qCRR	qGR
F1_aca.cag	0.32	0.69

F1_aca.cag	0.62	0.38
F1_aca.cag	0.44	0.56
F1_aca.cag	0.95	0.06
F1_aca.cag	0.17	0.83
F1_aca.cag	0.24	0.76
F1_aca.cag	0.96	0.04
F1_aca.cag	0.90	0.10
F1_aca.cag	0.54	0.46
F1_aca.cag	0.72	0.28
F1_aca.cag	0.69	0.31
F1_aca.cag	0.31	0.69
F1_aca.cag	0.06	0.94
F1_aca.cag	0.06	0.95
F1_aca.cag	0.92	0.08
F1_aca.cag	0.66	0.34
F1_aca.cag	0.05	0.95
F1_aca.cag	0.98	0.02
F1_aca.cag	0.96	0.04
F2_aca.cag	0.97	0.03
F2_aca.cag	0.54	0.47
F2_aca.cag	0.83	0.18
F2_aca.cag	0.68	0.32
F2_aca.cag	0.98	0.03
F2_aca.cag	0.85	0.15
F2_aca.cag	0.61	0.39
F2_aca.cag	0.84	0.16
F2_aca.cag	0.97	0.03
F2_aca.cag	0.88	0.12
F2_aca.cag	0.24	0.76
F2_aca.cag	0.66	0.34
F2_aca.cag	0.85	0.15
F2_aca.cag	0.99	0.01
F2_aca.cag	0.18	0.82
F2_aca.cag	0.55	0.45
F2_aca.cag	0.85	0.15
F2_aca.cag	0.99	0.01
F2_aca.cag	0.86	0.14
F2_aca.cag	0.61	0.40
Gun-66911	0.92	0.08
Gun-66912	0.96	0.04
Gun-66920	0.83	0.17
Gun-66921	0.86	0.14
Gun-66913	0.98	0.02
Gun-66914	0.97	0.03
Gun-66916	0.83	0.18
Gun-66917	0.69	0.31
Gun-66918	0.51	0.46
	0.97	0.49

Gun-66922	0.93	0.07
Gun-66923	0.95	0.05
Gun-66924	0.95	0.05
Gun-66925	0.81	0.19
Gun-66926	0.90	0.10
Gun-66927	0.97	0.03
Gun-66928	0.89	0.11
Gun-66929	0.71	0.29
Gun-66930	0.94	0.06
Gun-66931	0.91	0.09
Gun-66932	0.81	0.19
Ant-66955	0.57	0.44
Ant-66956	0.76	0.24
Ant-66957	0.15	0.85
Ant-66958	0.38	0.62
Ant-66949	0.58	0.43
Ant-66950	0.37	0.63
Ant-66951	0.23	0.77
Ant-66952	0.49	0.51
Ant-66953	0.92	0.09
Ant-66954	0.44	0.56
SFRG-66933	0.97	0.03
SFRG-66934	0.61	0.39
SFRG-66935	0.98	0.03
SFRG-66937	0.77	0.23
SFRG-66938	0.74	0.26
SFRG-66939	0.65	0.35
SFRG-66940	0.92	0.08
SFRG-66941	0.90	0.10
SFRG-66942	0.91	0.09
SFRG-66943	0.46	0.55
SFRG-66944	0.83	0.17
SFRG-66945	0.97	0.03
SFRG-66946	0.97	0.03
SFRG-66947	0.48	0.52
SFRG-66948	0.91	0.09

Table 4: AFLPOP \& STRUCTURE results comparison

Sample	AFLPOP assignment	STRUCTURE values		
		qCRR	qGR	ID
Ant-66949	GR Backcross	0.58	0.43	
Ant-66950	F2	0.37	0.63	
Ant-66951	F2	0.23	0.77	
Ant-66952	F2	0.49	0.51	
Ant-66953	F2	0.92	0.09	
Ant-66954	F2	0.44	0.56	
Ant-66955	GR Backcross	0.57	0.44	
Ant-66956	F2	0.76	0.24	
Ant-66957	F2	0.15	0.85	
Ant-66958	F2	0.38	0.62	
Gun-66911	CRR	0.92	0.08	unknown
Gun-66912	CRR	0.96	0.04	CRR
Gun-66913	CRR	0.98	0.02	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & \tilde{u} \\ & \ddot{\sim} \\ & \tilde{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$
Gun-66914	CRR Backcross	0.97	0.03	
Gun-66915	CRR Backcross	0.83	0.18	
Gun-66916	CRR	0.69	0.31	
Gun-66917	CRR Backcross	0.54	0.46	
Gun-66918	CRR Backcross	0.51	0.49	
Gun-66919	CRR Backcross	0.97	0.03	
Gun-66920	CRR	0.83	0.17	
Gun-66921	CRR	0.86	0.14	
Gun-66922	CRR Backcross	0.93	0.07	
Gun-66923	CRR Backcross	0.95	0.05	$\begin{aligned} & \text { 5 } \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$
Gun-66924	CRR Backcross	0.95	0.05	
Gun-66925	F1	0.81	0.19	
Gun-66926	CRR Backcross	0.9	0.1	
Gun-66927	CRR Backcross	0.97	0.03	
Gun-66928	CRR Backcross	0.89	0.11	
Gun-66929	F2	0.71	0.29	
Gun-66930	CRR	0.94	0.06	
Gun-66931	CRR	0.91	0.09	
Gun-66932	CRR	0.81	0.19	
SFRG-66933	CRR	0.97	0.03	
SFRG-66934	CRR Backcross	0.61	0.39	
SFRG-66935	CRR	0.98	0.03	
SFRG-66937	F2	0.77	0.23	
SFRG-66938	F1	0.74	0.26	
SFRG-66939	CRR Backcross	0.65	0.35	
SFRG-66940	CRR Backcross	0.92	0.08	
SFRG-66941	CRR Backcross	0.9	0.1	
SFRG-66942	CRR	0.91	0.09	
SFRG-66943	F2	0.46	0.55	
SFRG-66944	CRR Backcross	0.83	0.17	
SFRG-66945	CRR Backcross	0.97	0.03	
SFRG-66946	CRR Backcross	0.97	0.03	
SFRG-66947	CRR	0.48	0.52	
SFRG-66948	CRR	0.91	0.09	

\left.| Table 5: STRUCTURE Aug 2006 | | |
| :--- | :--- | :--- |
| unknowns admixture proportions | | |
| | | qCRR |
| qGR | | |
| F1_aca.cag | | 0.32 |$\right) 0.69$.

8-06unknwn	6	0.91	0.09
8-06unknwn	7	0.72	0.28
8-06unknwn	8	0.93	0.07
8-06unknwn	9	0.98	0.02
8-06unknwn	10	0.97	0.03
8-06unknwn	11	0.78	0.22
8-06unknwn	12	0.81	0.19
8-06unknwn	13	0.93	0.07
8-06unknwn	14	0.97	0.03
8-06unknwn	15	0.97	0.04
8-06unknwn	16	0.55	0.45
8-06unknwn	17	0.92	0.08
8-06unknwn	18	0.93	0.07
8-06unknwn	19	0.84	0.16
8-06unknwn	20	0.98	0.02
8-06unknwn	21	0.67	0.33
8-06unknwn	22	0.87	0.13
8-06unknwn	23	0.85	0.15
8-06unknwn	24	0.79	0.21
8-06unknwn	25	0.95	0.05
8-06unknwn	26	0.96	0.04
8-06unknwn	27	0.95	0.05
8-06unknwn	28	0.95	0.05
8-06unknwn	29	0.80	0.20
8-06unknwn	30	0.64	0.36
8-06unknwn	31	0.90	0.10
8-06unknwn	32	0.93	0.07
8-06unknwn	33	0.86	0.14
8-06unknwn	34	0.93	0.07
8-06unknwn	35	0.92	0.08
8-06unknwn	36	0.81	0.19
8-06unknwn	37	0.94	0.07
8-06unknwn	38	0.88	0.12
8-06unknwn	39	0.72	0.28
8-06unknwn	40	0.99	0.01
8-06unknwn	41	0.81	0.19
8-06unknwn	42	0.87	0.13
8-06unknwn	43	0.97	0.03
8-06unknwn	44	0.97	0.03
8-06unknwn	45	0.93	0.07
8-06unknwn	46	0.94	0.06
8-06unknwn	47	0.91	0.09
8-06unknwn	48	0.93	0.07
8-06unknwn	49	0.71	0.29
8-06unknwn	50	0.80	0.21
8-06unknwn	51	0.90	0.10
8-06unknwn	52	0.85	0.15
8-06unknwn	53	0.93	0.07
8-06unknwn	54	0.83	0.17

8-06unknwn	55	0.95	0.05
8-06unknwn	56	0.88	0.12
8-06unknwn	57	0.96	0.04
8-06unknwn	58	0.89	0.11
8-06unknwn	59	0.94	0.06
8-06unknwn	60	0.95	0.05
8-06unknwn	61	0.59	0.41
8-06unknwn	62	0.94	0.06
8-06unknwn	63	0.97	0.03
8-06unknwn	64	0.30	0.70
8-06unknwn	65	0.93	0.07
8-06unknwn	66	0.98	0.02
8-06unknwn	67	0.85	0.15
8-06unknwn	68	0.96	0.04
8-06unknwn	69	0.97	0.03
8-06unknwn	70	0.86	0.14
8-06unknwn	71	0.84	0.17
8-06unknwn	72	0.91	0.09
8-06unknwn	73	0.94	0.06
8-06unknwn	74	0.93	0.07
8-06unknwn	75	0.64	0.36
8-06unknwn	76	0.79	0.21
8-06unknwn	77	0.79	0.22
8-06unknwn	78	0.83	0.17
8-06unknwn	79	0.98	0.02
8-06unknwn	80	0.60	0.40
8-06unknwn	81	0.94	0.06
8-06unknwn	BOB 1	0.80	0.20
8-06unknwn	BOB 2	0.89	0.11
8-06unknwn	BOB 3	0.94	0.06
8-06unknwn	BOB 4	0.88	0.12
8-06unknwn	BOB 5	0.88	0.12
8-06unknwn	BOB 6	0.97	0.03
8-06unknwn	BOB 7	0.96	0.04
8-06unknwn	BOB 8	0.94	0.06
8-06unknwn	BOB 9	0.96	0.04
8-06unknwn	BOB 10	0.89	0.11
8-06unknwn	BOB 11	0.93	0.07
8-06unknwn	BOB 12	0.82	0.18
8-06unknwn	BOB 13	0.90	0.10
8-06unknwn	BOB 14	0.80	0.20
8-06unknwn	BOB 15	0.97	0.03
8-06unknwn	CHU-1-1	0.90	0.10
8-06unknwn	CHU-1-2	0.95	0.06
8-06unknwn	CHU-1-3	0.78	0.22
8-06unknwn	CHU-1-4	0.94	0.06
8-06unknwn	CHU-1-5	0.96	0.04
8-06unknwn	CHU-2-1	0.79	0.21
8-06unknwn	CHU-2-2	0.67	0.33
BOUn			

8-06unknwn	CHU-2-3	0.73	0.27
8-06unknwn	CHU-2-4	0.96	0.04
8-06unknwn	CHU-2-5	0.83	0.18
8-06unknwn	CHU-2-11	0.95	0.05
8-06unknwn	CHU-2-12	0.88	0.12
8-06unknwn	CHU-2-13	0.96	0.04
8-06unknwn	CHU-2-14	0.86	0.14

Figure 1
Antero, Gunnison, SF Rio Grande Individual Sample Admixture Proportions

Figure 2
August 2006 Unknowns Individual Sample Admixture Proportions

[^0]: * Hofer is used interchangeably with GR throughout this document to describe the resistant strain of rainbow trout obtained in 2003 from facilities in Germany.

